
MicroPython Lego RI5 Documentation
Release 1.11

Damien P. George, Paul Sokolovsky, StrangeButUntrue and contributors

May 20, 2021

CONTENTS

1 MicroPython libraries 1
1.1 Python standard libraries and micro-libraries . 2

1.1.1 Builtin functions and exceptions . 2
1.1.2 array – arrays of numeric data . 6
1.1.3 cmath – mathematical functions for complex numbers . 7
1.1.4 gc – control the garbage collector . 7
1.1.5 math – mathematical functions . 9
1.1.6 sys – system specific functions . 11
1.1.7 ubinascii – binary/ASCII conversions . 13
1.1.8 ucollections – collection and container types . 14
1.1.9 uerrno – system error codes . 15
1.1.10 uhashlib – hashing algorithms . 16
1.1.11 uheapq – heap queue algorithm . 17
1.1.12 uio – input/output streams . 17
1.1.13 ujson – JSON encoding and decoding . 19
1.1.14 uos – basic “operating system” services . 19
1.1.15 ure – simple regular expressions . 23
1.1.16 uselect – wait for events on a set of streams . 25
1.1.17 ustruct – pack and unpack primitive data types . 27
1.1.18 utime – time related functions . 27
1.1.19 uzlib – zlib decompression . 31
1.1.20 urandom – random number generation . 31

1.2 MicroPython-specific libraries . 32
1.2.1 machine — functions related to the hardware . 32
1.2.2 micropython – access and control MicroPython internals 56
1.2.3 uctypes – access binary data in a structured way . 58
1.2.4 utimeq – heap queue with times . 63
1.2.5 _onewire – OneWire Protocol . 64

1.3 MicroPython default libraries unavailable . 64
1.4 Libraries specific to the Technic Hub . 65

1.4.1 hub – hub brick functionality . 65
1.4.2 firmware – Firmware information and loading . 72
1.4.3 _api – user API . 73
1.4.4 commands – commands module . 88
1.4.5 event_loop – event_loop module . 96
1.4.6 mindstorms – Mindstorms branding of the user API . 97
1.4.7 programrunner – run user programs . 97
1.4.8 protocol – RI5 communication protocol . 99
1.4.9 runtime – runtime module . 104
1.4.10 spike – Spike Prime branding of the user API . 110

i

1.4.11 system – system module . 110
1.4.12 ui.hubui – menu system . 121
1.4.13 util – misc utility module . 123
1.4.14 hub_runtime – Hub main module . 142
1.4.15 version – version module . 143

2 The MicroPython language 145
2.1 Glossary . 145
2.2 The MicroPython Interactive Interpreter Mode (aka REPL) . 147

2.2.1 Auto-indent . 147
2.2.2 Auto-completion . 148
2.2.3 Interrupting a running program . 148
2.2.4 Paste Mode . 149
2.2.5 Soft Reset . 149
2.2.6 The special variable _ (underscore) . 150
2.2.7 Raw Mode . 150

2.3 Writing interrupt handlers . 150
2.3.1 Tips and recommended practices . 151
2.3.2 MicroPython Issues . 151
2.3.3 Exceptions . 154
2.3.4 General Issues . 154

2.4 Maximising MicroPython Speed . 157
2.4.1 Designing for speed . 158
2.4.2 Identifying the slowest section of code . 159
2.4.3 MicroPython code improvements . 160
2.4.4 The Native code emitter . 160
2.4.5 The Viper code emitter . 161
2.4.6 Accessing hardware directly . 162

2.5 MicroPython on Microcontrollers . 163
2.5.1 Flash Memory . 163
2.5.2 RAM . 163
2.5.3 The Heap . 167
2.5.4 String Operations . 169
2.5.5 Postscript . 169

2.6 Distribution packages, package management, and deploying applications 169
2.6.1 Overview . 169
2.6.2 Distribution packages . 170
2.6.3 upip package manager . 170
2.6.4 Cross-installing packages . 171
2.6.5 Cross-installing packages with freezing . 171
2.6.6 Creating distribution packages . 172
2.6.7 Application resources . 172
2.6.8 References . 173

2.7 Inline Assembler for Thumb2 architectures . 174
2.7.1 Document conventions . 174
2.7.2 Instruction Categories . 174
2.7.3 Usage examples . 184
2.7.4 References . 188

3 Developing and building MicroPython 189
3.1 MicroPython external C modules . 189

3.1.1 Structure of an external C module . 189
3.1.2 Basic Example . 190
3.1.3 Compiling the cmodule into MicroPython . 191

ii

3.1.4 Module usage in MicroPython . 191

4 MicroPython license information 193

Python Module Index 195

Index 197

iii

iv

CHAPTER

ONE

MICROPYTHON LIBRARIES

Warning: Important summary of this section

• MicroPython implements a subset of Python functionality for each module.

• To ease extensibility, MicroPython versions of standard Python modules usually have u (“micro”) prefix.

• Additions/deletions/modifications from the base Micropython version are indicated within the document.

This chapter describes modules (function and class libraries) which are built into MicroPython. There are a few cate-
gories of such modules:

• Modules which implement a subset of standard Python functionality and are not intended to be extended by the
user.

• Modules which implement a subset of Python functionality, with a provision for extension by the user (via Python
code).

• Modules which implement MicroPython extensions to the Python standard libraries.

• Modules specific to this particular MicroPython port and thus not portable.

Note about the availability of the modules and their contents: This documentation in general aspires to describe all
modules and functions/classes which are implemented in MicroPython project. However, MicroPython is highly con-
figurable, and each port to a particular board/embedded system makes available only a subset of MicroPython libraries.
For officially supported ports, there is an effort to either filter out non-applicable items, or mark individual descriptions
with “Availability:” clauses describing which ports provide a given feature.

You are able to discover the available, built-in libraries that can be imported by entering the following at the REPL:

help('modules')

Beyond the built-in libraries described in this documentation, many more modules from the Python standard library,
as well as further MicroPython extensions to it, can be found in micropython-lib.

1

MicroPython Lego RI5 Documentation, Release 1.11

1.1 Python standard libraries and micro-libraries

The following standard Python libraries have been “micro-ified” to fit in with the philosophy of MicroPython. They
provide the core functionality of that module and are intended to be a drop-in replacement for the standard Python
library. Some modules below use a standard Python name, but prefixed with “u”, e.g. ujson instead of json. This is to
signify that such a module is micro-library, i.e. implements only a subset of CPython module functionality. By naming
them differently, a user has a choice to write a Python-level module to extend functionality for better compatibility with
CPython (indeed, this is what done by the micropython-lib project mentioned above).

In the RI5 port, since it may be cumbersome to add Python-level wrapper modules to achieve naming compatibility
with CPython, micro-modules are available both by their u-name, and also by their non-u-name. The non-u-name can
be overridden by a file of that name in your library path (sys.path). For example, import json will first search for
a file json.py (or package directory json) and load that module if it is found. If nothing is found, it will fallback to
loading the built-in ujson module.

1.1.1 Builtin functions and exceptions

All builtin functions and exceptions are described here. They are also available via builtins module.

Functions and types

abs()

all()

any()

bin()

class bool

class bytearray

Difference for RI5
As with the array class, in RI5 this has methods append(), extend() and decode() that isn’t in standard
Micropython.

class bytes
See CPython documentation: bytes.

It’s missing a lot of the more complicated or specialized functions of that class though.

callable()

chr()

classmethod()

compile()

class complex

delattr(obj, name)
The argument name should be a string, and this function deletes the named attribute from the object given by
obj.

2 Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/functions.html#bytes

MicroPython Lego RI5 Documentation, Release 1.11

class dict

dir()

divmod()

enumerate()

eval()

exec()

execfile()
Not in Python 3, but it does show up in Micropython.

filter()

class float
In MicroPython, this class doesn’t have any methods.

class frozenset

getattr()

globals()

hasattr()

hash()

help()

hex()

id()

Difference for RI5
The input() function has been removed in RI5 - not unreasonably!

class int

classmethod from_bytes(bytes, byteorder)
In MicroPython, byteorder parameter must be positional (this is compatible with CPython).

to_bytes(size, byteorder)
In MicroPython, byteorder parameter must be positional (this is compatible with CPython).

isinstance()

issubclass()

iter()

len()

class list

locals()

map()

max()

class memoryview
In MicroPython, this doesn’t have any methods and can only be used with indices and slicing.

1.1. Python standard libraries and micro-libraries 3

MicroPython Lego RI5 Documentation, Release 1.11

min()

next()

class object

oct()

open(file, mode='r', buffering=- 1, encoding=None)
On RI5, this allows one to four arguments, so not as many as the corresponding CPython function.

ord()

pow()

print()

Difference for RI5
On the RI5, this function has been overwritten by an alias to a new builtin spikeprint()

class property

range()

repr()

reversed()

round()

class set

setattr()

class slice
The slice builtin is the type that slice objects have.

sorted()

spikeprint()

Difference for RI5
A new function that overwrites print(), presumably so that print responses can be successfully sent back over
the link to the controlling app.

staticmethod()

class str
See CPython documentation: str.

It’s missing a lot of the more complicated or specialized functions of that class though.

sum()

super()

class tuple

class type

4 Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/stdtypes.html#str

MicroPython Lego RI5 Documentation, Release 1.11

zip()

Exceptions

exception BaseException

exception ArithmeticError

exception AssertionError

exception AttributeError

exception EOFError

exception Exception

exception GeneratorExit

exception ImportError

exception IndentationError

exception IndexError

exception KeyboardInterrupt

exception KeyError

exception LookupError

exception MemoryError

exception NameError

exception NotImplementedError

exception OSError
See CPython documentation: OSError. MicroPython doesn’t implement errno attribute, instead use the stan-
dard way to access exception arguments: exc.args[0].

exception OverflowError

exception RuntimeError

exception StopAsyncIteration

exception StopIteration

exception SyntaxError

exception SystemExit
See CPython documentation: SystemExit.

exception TypeError
See CPython documentation: TypeError.

exception UnicodeError

exception ValueError

exception ZeroDivisionError

1.1. Python standard libraries and micro-libraries 5

https://docs.python.org/3.5/library/exceptions.html#OSError
https://docs.python.org/3.5/library/exceptions.html#SystemExit
https://docs.python.org/3.5/library/exceptions.html#TypeError

MicroPython Lego RI5 Documentation, Release 1.11

Constants

Ellipsis
The same as the ellipsis literal “. . . ”. Special value used mostly in conjunction with extended slicing syntax for
user-defined container data types.

NotImplemented
Special value which should be returned by the binary special methods (e.g. __eq__(), __lt__(), __add__(),
__rsub__(), etc.) to indicate that the operation is not implemented with respect to the other type; may be returned
by the in-place binary special methods (e.g. __imul__(), __iand__(), etc.) for the same purpose. It should not
be evaluated in a boolean context.

Note: When a binary (or in-place) method returns NotImplemented the interpreter will try the reflected operation
on the other type (or some other fallback, depending on the operator). If all attempts return NotImplemented, the
interpreter will raise an appropriate exception. Incorrectly returning NotImplemented will result in a misleading
error message or the NotImplemented value being returned to Python code.

See Implementing the arithmetic operations for examples.

Note: NotImplementedError and NotImplemented are not interchangeable, even though they have similar names
and purposes. See NotImplementedError for details on when to use it.

1.1.2 array – arrays of numeric data

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: array.

Supported format codes: b, B, h, H, i, I, l, L, q, Q, f, d (the latter 2 depending on the floating-point support).

Classes

class array.array(typecode[, iterable])
Create array with elements of given type. Initial contents of the array are given by iterable. If it is not provided,
an empty array is created.

append(val)
Append new element val to the end of array, growing it.

extend(iterable)
Append new elements as contained in iterable to the end of array, growing it.

decode()
Outputs a string of the decoded array. Seems to treat each element as a byte and use ASCII encoding only?

Difference for RI5
This function is an extension from the base MicroPython version.

6 Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/array.html#module-array

MicroPython Lego RI5 Documentation, Release 1.11

1.1.3 cmath – mathematical functions for complex numbers

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: cmath.

The cmath module provides some basic mathematical functions for working with complex numbers.

Functions

cmath.cos(z)
Return the cosine of z.

cmath.exp(z)
Return the exponential of z.

cmath.log(z)
Return the natural logarithm of z. The branch cut is along the negative real axis.

cmath.log10(z)
Return the base-10 logarithm of z. The branch cut is along the negative real axis.

cmath.phase(z)
Returns the phase of the number z, in the range (-pi, +pi].

cmath.polar(z)
Returns, as a tuple, the polar form of z.

cmath.rect(r, phi)
Returns the complex number with modulus r and phase phi.

cmath.sin(z)
Return the sine of z.

cmath.sqrt(z)
Return the square-root of z.

Constants

cmath.e
base of the natural logarithm

cmath.pi
the ratio of a circle’s circumference to its diameter

1.1.4 gc – control the garbage collector

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: gc.

1.1. Python standard libraries and micro-libraries 7

https://docs.python.org/3.5/library/cmath.html#module-cmath
https://docs.python.org/3.5/library/gc.html#module-gc

MicroPython Lego RI5 Documentation, Release 1.11

Functions

gc.enable()
Enable automatic garbage collection. This is on by default for RI5 programs.

gc.disable()
Disable automatic garbage collection. Heap memory can still be allocated, and garbage collection can still be
initiated manually using gc.collect().

gc.collect()
Run a garbage collection.

gc.mem_alloc()
Return the number of bytes of heap RAM that are allocated.

Difference to CPython
This function is MicroPython extension.

gc.mem_free()
Return the number of bytes of available heap RAM, or -1 if this amount is not known.

Difference to CPython
This function is MicroPython extension.

gc.threshold([amount])
Set or query the additional GC allocation threshold. Normally, a collection is triggered only when a new allo-
cation cannot be satisfied, i.e. on an out-of-memory (OOM) condition. If this function is called, in addition to
OOM, a collection will be triggered each time after amount bytes have been allocated (in total, since the previous
time such an amount of bytes have been allocated). amount is usually specified as less than the full heap size,
with the intention to trigger a collection earlier than when the heap becomes exhausted, and in the hope that an
early collection will prevent excessive memory fragmentation. This is a heuristic measure, the effect of which
will vary from application to application, as well as the optimal value of the amount parameter.

Calling the function without argument will return the current value of the threshold. A value of -1 means a
disabled allocation threshold.

Difference to CPython
This function is a MicroPython extension. CPython has a similar function - set_threshold(), but due to
different GC implementations, its signature and semantics are different.

gc.isenabled()
Returns true if automatic collection is enabled.

Difference for RI5
This function is an extension from the base MicroPython version.

8 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

1.1.5 math – mathematical functions

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: math.

The math module provides some basic mathematical functions for working with floating-point numbers.

Note: On the RI5, early calculations show you get about 6 sig fig of precision for floats.

Functions

math.acos(x)
Return the inverse cosine of x.

math.acosh(x)
Return the inverse hyperbolic cosine of x.

math.asin(x)
Return the inverse sine of x.

math.asinh(x)
Return the inverse hyperbolic sine of x.

math.atan(x)
Return the inverse tangent of x.

math.atan2(y, x)
Return the principal value of the inverse tangent of y/x.

math.atanh(x)
Return the inverse hyperbolic tangent of x.

math.ceil(x)
Return an integer, being x rounded towards positive infinity.

math.copysign(x, y)
Return x with the sign of y.

math.cos(x)
Return the cosine of x.

math.cosh(x)
Return the hyperbolic cosine of x.

math.degrees(x)
Return radians x converted to degrees.

math.erf(x)
Return the error function of x.

math.erfc(x)
Return the complementary error function of x.

math.exp(x)
Return the exponential of x.

math.expm1(x)
Return exp(x) - 1.

math.fabs(x)
Return the absolute value of x.

1.1. Python standard libraries and micro-libraries 9

https://docs.python.org/3.5/library/math.html#module-math

MicroPython Lego RI5 Documentation, Release 1.11

math.floor(x)
Return an integer, being x rounded towards negative infinity.

math.fmod(x, y)
Return the remainder of x/y.

math.frexp(x)
Decomposes a floating-point number into its mantissa and exponent. The returned value is the tuple (m, e)
such that x == m * 2**e exactly. If x == 0 then the function returns (0.0, 0), otherwise the relation 0.5
<= abs(m) < 1 holds.

math.gamma(x)
Return the gamma function of x.

math.isfinite(x)
Return True if x is finite.

math.isinf(x)
Return True if x is infinite.

math.isnan(x)
Return True if x is not-a-number

math.ldexp(x, exp)
Return x * (2**exp).

math.lgamma(x)
Return the natural logarithm of the gamma function of x.

math.log(x)
Return the natural logarithm of x.

math.log10(x)
Return the base-10 logarithm of x.

math.log2(x)
Return the base-2 logarithm of x.

math.modf(x)
Return a tuple of two floats, being the fractional and integral parts of x. Both return values have the same sign
as x.

math.pow(x, y)
Returns x to the power of y.

math.radians(x)
Return degrees x converted to radians.

math.sin(x)
Return the sine of x.

math.sinh(x)
Return the hyperbolic sine of x.

math.sqrt(x)
Return the square root of x.

math.tan(x)
Return the tangent of x.

math.tanh(x)
Return the hyperbolic tangent of x.

10 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

math.trunc(x)
Return an integer, being x rounded towards 0.

math.isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
Return True if the values a and b are close to each other and False otherwise.

Whether or not two values are considered close is determined according to given absolute and relative tolerances.

rel_tol is the relative tolerance it is the maximum allowed difference between a and b, relative to the larger
absolute value of a or b. For example, to set a tolerance of 5%, pass rel_tol=0.05. The default tolerance is 1e-09,
which assures that the two values are the same within about 9 decimal digits. rel_tol must be greater than zero.

abs_tol is the minimum absolute tolerance useful for comparisons near zero. abs_tol must be at least zero.

If no errors occur, the result will be: abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol).

The IEEE 754 special values of NaN, inf, and -inf will be handled according to IEEE rules. Specifically, NaN is
not considered close to any other value, including NaN. inf and -inf are only considered close to themselves.

Difference for RI5
This function is an extension from the base MicroPython version.

math.factorial(x)
Return x factorial. Raises ValueError if x is not integral or is negative.

Difference for RI5
This function is an extension from the base MicroPython version.

Constants

math.e
base of the natural logarithm

math.pi
the ratio of a circle’s circumference to its diameter

1.1.6 sys – system specific functions

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: sys.

Functions

sys.exit(retval=0)
Terminate current program with a given exit code. Underlyingly, this function raise as SystemExit exception.
If an argument is given, its value given as an argument to SystemExit.

sys.print_exception(exc, file=sys.stdout)
Print exception with a traceback to a file-like object file (or sys.stdout by default).

Difference to CPython

1.1. Python standard libraries and micro-libraries 11

https://docs.python.org/3.5/library/sys.html#module-sys

MicroPython Lego RI5 Documentation, Release 1.11

This is simplified version of a function which appears in the tracebackmodule in CPython. Unlike traceback.
print_exception(), this function takes just exception value instead of exception type, exception value, and
traceback object; file argument should be positional; further arguments are not supported. CPython-compatible
traceback module can be found in micropython-lib.

Constants

sys.argv
A mutable list of arguments the current program was started with. Generally none for RI5 programs run normally.

sys.byteorder
The byte order of the system ("little" or "big"). Is little on the RI5

sys.implementation
Object with information about the current Python implementation. For MicroPython, it has following attributes:

• name - string “micropython”

• version - tuple (major, minor, micro), e.g. (1, 11, 0)

• mpy - number e.g. 517

This object is the recommended way to distinguish MicroPython from other Python implementations (note that
it still may not exist in the very minimal ports).

Difference to CPython
CPython mandates more attributes for this object, but the actual useful bare minimum is implemented in Mi-
croPython.

sys.maxsize
Maximum value which a native integer type can hold on the current platform, or maximum value representable
by MicroPython integer type, if it’s smaller than platform max value (that is the case for MicroPython ports
without long int support).

On RI5, it’s 2147483647 (=0x7FFFFFFF).

This attribute is useful for detecting “bitness” of a platform (32-bit vs 64-bit, etc.). It’s recommended to not
compare this attribute to some value directly, but instead count number of bits in it:

bits = 0
v = sys.maxsize
while v:

bits += 1
v >>= 1

if bits > 32:
64-bit (or more) platform
...

else:
32-bit (or less) platform
Note that on 32-bit platform, value of bits may be less than 32
(e.g. 31) due to peculiarities described above, so use "> 16",
"> 32", "> 64" style of comparisons.

12 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

sys.modules
Dictionary of loaded modules. On RI5, this doesn’t include Python-builtin modules but does include modules
loaded from the filesystem.

sys.path
A mutable list of directories to search for imported modules.

On RI5, by default it’s [‘’, ‘/flash’, ‘/flash/lib’]

sys.platform
The platform that MicroPython is running on. For OS/RTOS ports, this is usually an identifier of the OS, e.g.
"linux". For baremetal ports it is an identifier of a board, e.g. "pyboard" for the original MicroPython
reference board. It thus can be used to distinguish one board from another. If you need to check whether your
program runs on MicroPython (vs other Python implementation), use sys.implementation instead.

On RI5 it’s “LEGO Learning System Hub”.

sys.stderr
Standard error stream .

sys.stdin
Standard input stream .

sys.stdout
Standard output stream .

sys.version
Python language version that this implementation conforms to, as a string. E.g. “3.4.0”.

sys.version_info
Python language version that this implementation conforms to, as a tuple of ints. E.g. (3, 4, 0)

1.1.7 ubinascii – binary/ASCII conversions

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: binascii.

This module implements conversions between binary data and various encodings of it in ASCII form (in both direc-
tions).

Functions

ubinascii.hexlify(data[, sep])
Convert binary data to hexadecimal representation. Returns bytes string.

Difference to CPython
If additional argument, sep is supplied, it is used as a separator between hexadecimal values.

ubinascii.unhexlify(data)
Convert hexadecimal data to binary representation. Returns bytes string. (i.e. inverse of hexlify)

ubinascii.a2b_base64(data)
Decode base64-encoded data, ignoring invalid characters in the input. Conforms to RFC 2045 s.6.8. Returns a
bytes object.

1.1. Python standard libraries and micro-libraries 13

https://docs.python.org/3.5/library/binascii.html#module-binascii
https://tools.ietf.org/html/rfc2045#section-6.8

MicroPython Lego RI5 Documentation, Release 1.11

ubinascii.b2a_base64(data)
Encode binary data in base64 format, as in RFC 3548. Returns the encoded data followed by a newline character,
as a bytes object.

1.1.8 ucollections – collection and container types

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: collections.

This module implements advanced collection and container types to hold/accumulate various objects.

Classes

ucollections.deque(iterable, maxlen[, flags])
Deques (double-ended queues) are a list-like container that support O(1) appends and pops from either side of
the deque. New deques are created using the following arguments:

• iterable must be the empty tuple, and the new deque is created empty.

• maxlen must be specified and the deque will be bounded to this maximum length. Once the deque is full,
any new items added will discard items from the opposite end.

• The optional flags can be 1 to check for overflow when adding items.

As well as supporting bool and len, deque objects have the following methods:

deque.append(x)
Add x to the right side of the deque. Raises IndexError if overflow checking is enabled and there is no more
room left.

deque.popleft()
Remove and return an item from the left side of the deque. Raises IndexError if no items are present.

ucollections.namedtuple(name, fields)
This is factory function to create a new namedtuple type with a specific name and set of fields. A namedtuple is
a subclass of tuple which allows to access its fields not just by numeric index, but also with an attribute access
syntax using symbolic field names. Fields is a sequence of strings specifying field names. For compatibility with
CPython it can also be a a string with space-separated field named (but this is less efficient). Example of use:

from ucollections import namedtuple

MyTuple = namedtuple("MyTuple", ("id", "name"))
t1 = MyTuple(1, "foo")
t2 = MyTuple(2, "bar")
print(t1.name)
assert t2.name == t2[1]

ucollections.OrderedDict(...)
dict type subclass which remembers and preserves the order of keys added. When ordered dict is iterated over,
keys/items are returned in the order they were added:

from ucollections import OrderedDict

To make benefit of ordered keys, OrderedDict should be initialized
from sequence of (key, value) pairs.
d = OrderedDict([("z", 1), ("a", 2)])

(continues on next page)

14 Chapter 1. MicroPython libraries

https://tools.ietf.org/html/rfc3548.html
https://docs.python.org/3.5/library/collections.html#module-collections

MicroPython Lego RI5 Documentation, Release 1.11

(continued from previous page)

More items can be added as usual
d["w"] = 5
d["b"] = 3
for k, v in d.items():

print(k, v)

Output:

z 1
a 2
w 5
b 3

1.1.9 uerrno – system error codes

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: errno.

This module provides access to symbolic error codes for OSError exception. A particular inventory of codes depends
on MicroPython port.

Constants

EEXIST, EAGAIN, etc.
Error codes, based on ANSI C/POSIX standard. All error codes start with “E”. As mentioned above, inventory
of the codes depends on MicroPython port. Errors are usually accessible as exc.args[0] where exc is an
instance of OSError. Usage example:

try:
uos.mkdir("my_dir")

except OSError as exc:
if exc.args[0] == uerrno.EEXIST:

print("Directory already exists")

EPERM = 1

ENOENT = 2

EIO = 5

EBADF = 9

EAGAIN = 11

ENOMEM = 12

EACCES = 13

EEXIST = 17

ENODEV = 19

EISDIR = 21

EINVAL = 22

EOPNOTSUPP = 95

1.1. Python standard libraries and micro-libraries 15

https://docs.python.org/3.5/library/errno.html#module-errno

MicroPython Lego RI5 Documentation, Release 1.11

EADDRINUSE = 98

ECONNABORTED = 103

ECONNRESET = 104

ENOBUFS = 105

ENOTCONN = 107

ETIMEDOUT = 110

ECONNREFUSED = 111

EHOSTUNREACH = 113

EALREADY = 114

EINPROGRESS = 115

uerrno.errorcode
Dictionary mapping numeric error codes to strings with symbolic error code (see above):

>>> print(uerrno.errorcode[uerrno.EEXIST])
EEXIST

1.1.10 uhashlib – hashing algorithms

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: hashlib.

This module implements binary data hashing algorithms. The exact inventory of available algorithms depends on a
board. RI5 implements:

• SHA256 - The current generation, modern hashing algorithm (of SHA2 series). It is suitable for
cryptographically-secure purposes.

Constructors

class uhashlib.sha256([data])
Create an SHA256 hasher object and optionally feed data into it.

Difference for RI5
Classes sha1 and md5 from the base MicroPython version are not implemented on the RI5.

Methods

hash.update(data)
Feed more binary data into hash.

hash.digest()
Return hash for all data passed through hash, as a bytes object. After this method is called, more data cannot be
fed into the hash any longer.

hash.hexdigest()
This method is NOT implemented. Use ubinascii.hexlify(hash.digest()) to achieve a similar effect.

16 Chapter 1. MicroPython libraries

https://docs.python.org/3.5/library/hashlib.html#module-hashlib

MicroPython Lego RI5 Documentation, Release 1.11

1.1.11 uheapq – heap queue algorithm

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: heapq.

This module implements the heap queue algorithm.

A heap queue is simply a list that has its elements stored in a certain way.

Functions

uheapq.heappush(heap, item)
Push the item onto the heap.

uheapq.heappop(heap)
Pop the first item from the heap, and return it. Raises IndexError if heap is empty.

uheapq.heapify(x)
Convert the list x into a heap. This is an in-place operation.

1.1.12 uio – input/output streams

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: io.

This module contains additional types of stream (file-like) objects and helper functions.

Conceptual hierarchy

Difference to CPython
Conceptual hierarchy of stream base classes is simplified in MicroPython, as described in this section.

(Abstract) base stream classes, which serve as a foundation for behavior of all the concrete classes, adhere to few
dichotomies (pair-wise classifications) in CPython. In MicroPython, they are somewhat simplified and made implicit
to achieve higher efficiencies and save resources.

An important dichotomy in CPython is unbuffered vs buffered streams. In MicroPython, all streams are currently
unbuffered. This is because all modern OSes, and even many RTOSes and filesystem drivers already perform buffering
on their side. Adding another layer of buffering is counter- productive (an issue known as “bufferbloat”) and takes
precious memory. Note that there still cases where buffering may be useful, so we may introduce optional buffering
support at a later time.

But in CPython, another important dichotomy is tied with “bufferedness” - it’s whether a stream may incur short
read/writes or not. A short read is when a user asks e.g. 10 bytes from a stream, but gets less, similarly for writes. In
CPython, unbuffered streams are automatically short operation susceptible, while buffered are guarantee against them.
The no short read/writes is an important trait, as it allows to develop more concise and efficient programs - something
which is highly desirable for MicroPython. So, while MicroPython doesn’t support buffered streams, it still provides
for no-short-operations streams. Whether there will be short operations or not depends on each particular class’ needs,
but developers are strongly advised to favor no-short-operations behavior for the reasons stated above. For example,
MicroPython sockets are guaranteed to avoid short read/writes. Actually, at this time, there is no example of a short-
operations stream class in the core, and one would be a port-specific class, where such a need is governed by hardware
peculiarities.

1.1. Python standard libraries and micro-libraries 17

https://docs.python.org/3.5/library/heapq.html#module-heapq
https://docs.python.org/3.5/library/io.html#module-io

MicroPython Lego RI5 Documentation, Release 1.11

The no-short-operations behavior gets tricky in case of non-blocking streams, blocking vs non-blocking behavior being
another CPython dichotomy, fully supported by MicroPython. Non-blocking streams never wait for data either to
arrive or be written - they read/write whatever possible, or signal lack of data (or ability to write data). Clearly,
this conflicts with “no-short-operations” policy, and indeed, a case of non-blocking buffered (and this no-short-ops)
streams is convoluted in CPython - in some places, such combination is prohibited, in some it’s undefined or just not
documented, in some cases it raises verbose exceptions. The matter is much simpler in MicroPython: non-blocking
stream are important for efficient asynchronous operations, so this property prevails on the “no-short-ops” one. So,
while blocking streams will avoid short reads/writes whenever possible (the only case to get a short read is if end of
file is reached, or in case of error (but errors don’t return short data, but raise exceptions)), non-blocking streams may
produce short data to avoid blocking the operation.

The final dichotomy is binary vs text streams. MicroPython of course supports these, but while in CPython text streams
are inherently buffered, they aren’t in MicroPython. (Indeed, that’s one of the cases for which we may introduce
buffering support.)

Note that for efficiency, MicroPython doesn’t provide abstract base classes corresponding to the hierarchy above, and
it’s not possible to implement, or subclass, a stream class in pure Python.

Functions

uio.open(name, mode='r', buffering=- 1, encoding=None)
Open a file. Builtin open() function is aliased to this function.

Classes

class uio.IOBase(...)
(Python abstract base class for IO objects still technically exists, although isinstance doesn’t think the ones below
are instances of it.)

class uio.FileIO(...)
This is type of a file open in binary mode, e.g. using open(name, "rb"). You should not instantiate this class
directly.

class uio.TextIOWrapper(...)
This is type of a file open in text mode, e.g. using open(name, "rt"). You should not instantiate this class
directly.

class uio.StringIO([string])
class uio.BytesIO([string])

In-memory file-like objects for input/output. StringIO is used for text-mode I/O (similar to a normal file opened
with “t” modifier). BytesIO is used for binary-mode I/O (similar to a normal file opened with “b” modifier).
Initial contents of file-like objects can be specified with string parameter (should be normal string for StringIO
or bytes object for BytesIO). All the basic file methods (read(), readinto(), readline(), readlines(),
write(), seek(), flush(), close()) are available on these objects, and additionally, a following method:

getvalue()
Get the current contents of the underlying buffer which holds data.

class uio.StringIO(alloc_size)

class uio.BytesIO(alloc_size)
Create an empty StringIO/BytesIO object, preallocated to hold up to alloc_size number of bytes. That means
that writing that amount of bytes won’t lead to reallocation of the buffer, and thus won’t hit out-of-memory situ-
ation or lead to memory fragmentation. These constructors are a MicroPython extension and are recommended
for usage only in special cases and in system-level libraries, not for end-user applications.

18 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

Difference to CPython
These constructors are a MicroPython extension.

1.1.13 ujson – JSON encoding and decoding

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: json.

This modules allows to convert between Python objects and the JSON data format.

Functions

ujson.dump(obj, stream)
Serialise obj to a JSON string, writing it to the given stream.

ujson.dumps(obj)
Return obj represented as a JSON string.

ujson.load(stream)
Parse the given stream, interpreting it as a JSON string and deserialising the data to a Python object. The resulting
object is returned.

Parsing continues until end-of-file is encountered. A ValueError is raised if the data in stream is not correctly
formed.

ujson.loads(str)
Parse the JSON str and return an object. Raises ValueError if the string is not correctly formed.

1.1.14 uos – basic “operating system” services

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: os.

The uos module contains functions for filesystem access and mounting, terminal redirection and duplication, and the
uname function.

General functions

uos.uname()
Return a tuple (possibly a named tuple) containing information about the underlying machine and/or its operating
system. The tuple has five fields in the following order, each of them being a string:

• sysname – the name of the underlying system. “Lego Technic Large Hub”

• nodename – the network name. “LEGO Learning System Hub”

• release – the version of the underlying system. The MicroPython release number on which this is based.

• version – a more exact MicroPython version and build date

• machine – an identifier for the underlying hardware (eg board, CPU). “Lego Technic Large Hub with
STM32F413xx”

1.1. Python standard libraries and micro-libraries 19

https://docs.python.org/3.5/library/json.html#module-json
https://docs.python.org/3.5/library/os.html#module-os

MicroPython Lego RI5 Documentation, Release 1.11

Difference for RI5
The function uos.urandom() from the base MicroPython version is not implemented on the RI5

Constants

uos.sep
Filesystem path separator ‘'

Difference for RI5
This constant is no longer noted in the base MicroPython docs version.

Filesystem access

uos.chdir(path)
Change current directory.

uos.getcwd()
Get the current directory.

uos.ilistdir([dir])
This function returns an iterator which then yields tuples corresponding to the entries in the directory that it is
listing. With no argument it lists the current directory, otherwise it lists the directory given by dir.

The tuples have the form (name, type, inode, size):

• name is a string (or bytes if dir is a bytes object) and is the name of the entry;

• type is an integer that specifies the type of the entry, with 0x4000 for directories and 0x8000 for regular
files;

• inode is an integer corresponding to the inode of the file, and may be 0 for filesystems that don’t have such
a notion.

• For file entries, size is an integer representing the size of the file or -1 if unknown. Its meaning is currently
undefined for directory entries.

uos.listdir([dir])
With no argument, list the current directory. Otherwise list the given directory.

uos.mkdir(path)
Create a new directory.

uos.remove(path)
Remove a file. unlink() is also available and is semantically identical to this.

uos.rmdir(path)
Remove a directory.

uos.rename(old_path, new_path)
Rename a file.

uos.stat(path)
Get the status of a file or directory.

20 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

uos.statvfs(path)
Get the status of a fileystem.

Returns a tuple with the filesystem information in the following order:

• f_bsize – file system block size. 4096 for the RI5.

• f_frsize – fragment size. 4096 for the RI5.

• f_blocks – size of fs in f_frsize units. 7936 for the RI5.

• f_bfree – number of free blocks.

• f_bavail – number of free blocks for unpriviliged users

• f_files – number of inodes. 0 for the RI5.

• f_ffree – number of free inodes. 0 for the RI5.

• f_favail – number of free inodes for unpriviliged users. 0 for the RI5.

• f_flag – mount flags. 0 for the RI5.

• f_namemax – maximum filename length. 255 for the RI5.

uos.sync()
Sync all filesystems.

Terminal redirection and duplication

uos.dupterm(stream_object, index=0)
Duplicate or switch the MicroPython terminal (the REPL) on the given stream-like object. The stream_object
argument must be a native stream object, or derive from uio.IOBase and implement the readinto() and
write() methods. The stream should be in non-blocking mode and readinto() should return None if there is
no data available for reading.

After calling this function all terminal output is repeated on this stream, and any input that is available on the
stream is passed on to the terminal input.

The index parameter should be a non-negative integer and specifies which duplication slot is set. A given port
may implement more than one slot (slot 0 will always be available) and in that case terminal input and output is
duplicated on all the slots that are set.

If None is passed as the stream_object then duplication is cancelled on the slot given by index.

The function returns the previous stream-like object in the given slot.

Filesystem mounting

Some ports provide a Virtual Filesystem (VFS) and the ability to mount multiple “real” filesystems within this VFS.
Filesystem objects can be mounted at either the root of the VFS, or at a subdirectory that lives in the root. This allows
dynamic and flexible configuration of the filesystem that is seen by Python programs. Ports that have this functionality
provide the mount() and umount() functions, and possibly various filesystem implementations represented by VFS
classes.

uos.mount(fsobj, mount_point, *, readonly)
Mount the filesystem object fsobj at the location in the VFS given by the mount_point string. fsobj can be a
a VFS object that has a mount() method, or a block device. If it’s a block device then the filesystem type is
automatically detected (an exception is raised if no filesystem was recognised). mount_point may be '/' to
mount fsobj at the root, or '/<name>' to mount it at a subdirectory under the root.

If readonly is True then the filesystem is mounted read-only.

1.1. Python standard libraries and micro-libraries 21

MicroPython Lego RI5 Documentation, Release 1.11

During the mount process the method mount() is called on the filesystem object.

Will raise OSError(EPERM) if mount_point is already mounted.

uos.umount(mount_point)
Unmount a filesystem. mount_point can be a string naming the mount location, or a previously-mounted filesys-
tem object. During the unmount process the method umount() is called on the filesystem object.

Will raise OSError(EINVAL) if mount_point is not found.

class uos.VfsLfs1(block_dev)
Create a filesystem object that uses the littlefs v1 filesystem format. Storage of the littlefs filesystem is provided
by block_dev. Objects created by this constructor can be mounted using mount().

static mkfs(block_dev)
Build a littlefs filesystem on block_dev.

Difference for RI5
The base MicroPython version uses a VfsFat filesystem. The RI5 replaces that with VfsLfs1. This also means
that block devices below use the extended interface so need to implement the offset parameter when doing reads
and writes.

Block devices

A block device is an object which implements the block protocol, which is a set of methods described below by the
AbstractBlockDev class. A concrete implementation of this class will usually allow access to the memory-like
functionality a piece of hardware (like flash memory). A block device can be used by a particular filesystem driver to
store the data for its filesystem.

class uos.AbstractBlockDev(...)
Construct a block device object. The parameters to the constructor are dependent on the specific block device.

readblocks(block_num, buf, offset)
Starting at the block given by the index block_num and from offset bytes into that block, read blocks from
the device into buf (an array of bytes). The number of blocks to read is given by the length of buf.

writeblocks(block_num, buf, offset)
Starting at the block given by the index block_num and from offset bytes into that block, write blocks from
buf (an array of bytes) to the device. The number of blocks to write is given by the length of buf.

ioctl(op, arg)
Control the block device and query its parameters. The operation to perform is given by op which is one
of the following integers:

• 1 – initialise the device (arg is unused)

• 2 – shutdown the device (arg is unused)

• 3 – sync the device (arg is unused)

• 4 – get a count of the number of blocks, should return an integer (arg is unused)

• 5 – get the number of bytes in a block, should return an integer, or None in which case the default value
of 512 is used (arg is unused)

• 6 – erase a block (arg is the block number to erase)

By way of example, the following class will implement a block device that stores its data in RAM using a bytearray:

22 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

class RAMBlockDev:
def __init__(self, block_size, num_blocks):

self.block_size = block_size
self.data = bytearray(block_size * num_blocks)

def readblocks(self, block_num, buf, offset):
for i in range(len(buf)):

buf[i] = self.data[block_num * self.block_size + offset + i]

def writeblocks(self, block_num, buf, offset):
for i in range(len(buf)):

self.data[block_num * self.block_size + offset + i] = buf[i]

def ioctl(self, op, arg):
if op == 4: # get number of blocks

return len(self.data) // self.block_size
if op == 5: # get block size

return self.block_size
if op == 6: # erase block

self.writeblocks(arg, bytearray(self.block_size), 0)

It should be able to be used as follows, although this currently seems to fail with a TypeError on RI5 (so maybe
something else is missing from the above):

import uos

bdev = RAMBlockDev(512, 50)
uos.VfsFat.mkfs(bdev)
vfs = uos.VfsFat(bdev)
uos.mount(vfs, '/ramdisk')

1.1.15 ure – simple regular expressions

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: re.

This module implements regular expression operations. Regular expression syntax supported is a subset of CPython
re module (and actually is a subset of POSIX extended regular expressions).

Supported operators and special sequences are:

. Match any character.

[...] Match set of characters. Individual characters and ranges are supported, including negated sets (e.g. [^a-c]).

^ Match the start of the string.

$ Match the end of the string.

? Match zero or one of the previous sub-pattern.

* Match zero or more of the previous sub-pattern.

+ Match one or more of the previous sub-pattern.

?? Non-greedy version of ?, match zero or one, with the preference for zero.

*? Non-greedy version of *, match zero or more, with the preference for the shortest match.

1.1. Python standard libraries and micro-libraries 23

https://docs.python.org/3.5/library/re.html#module-re

MicroPython Lego RI5 Documentation, Release 1.11

+? Non-greedy version of +, match one or more, with the preference for the shortest match.

| Match either the left-hand side or the right-hand side sub-patterns of this operator.

(...) Grouping. Each group is capturing (a substring it captures can be accessed with match.group() method).

\d Matches digit. Equivalent to [0-9].

\D Matches non-digit. Equivalent to [^0-9].

\s Matches whitespace. Equivalent to [\t-\r].

\S Matches non-whitespace. Equivalent to [^ \t-\r].

\w Matches “word characters” (ASCII only). Equivalent to [A-Za-z0-9_].

\W Matches non “word characters” (ASCII only). Equivalent to [^A-Za-z0-9_].

\ Escape character. Any other character following the backslash, except for those listed above, is taken literally. For
example, * is equivalent to literal * (not treated as the * operator). Note that \r, \n, etc. are not handled
specially, and will be equivalent to literal letters r, n, etc. Due to this, it’s not recommended to use raw Python
strings (r"") for regular expressions. For example, r"\r\n" when used as the regular expression is equivalent
to "rn". To match CR character followed by LF, use "\r\n".

NOT SUPPORTED:

• counted repetitions ({m,n})

• named groups ((?P<name>...))

• non-capturing groups ((?:...))

• more advanced assertions (\b, \B)

• special character escapes like \r, \n - use Python’s own escaping instead

• etc.

Example:

import ure

As ure doesn't support escapes itself, use of r"" strings is not
recommended.
regex = ure.compile("[\r\n]")

regex.split("line1\rline2\nline3\r\n")

Result:
['line1', 'line2', 'line3', '', '']

Functions

ure.compile(regex_str[, flags])
Compile regular expression, return regex object.

ure.match(regex_str, string)
Compile regex_str and match against string. Match always happens from starting position in a string.

ure.search(regex_str, string)
Compile regex_str and search it in a string. Unlike match , this will search string for first position which matches
regex (which still may be 0 if regex is anchored).

24 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

ure.sub(regex_str, replace, string, count=0, flags=0)
Compile regex_str and search for it in string, replacing all matches with replace, and returning the new string.

replace can be a string or a function. If it is a string then escape sequences of the form \<number> and \
g<number> can be used to expand to the corresponding group (or an empty string for unmatched groups). If
replace is a function then it must take a single argument (the match) and should return a replacement string.

If count is specified and non-zero then substitution will stop after this many substitutions are made. The flags
argument is ignored.

Note: availability of this function depends on MicroPython port.

Difference for RI5
The base MicroPython version has a ure.DEBUG flag value that the RI5 doesn’t have.

Regex objects

Compiled regular expression. Instances of this class are created using ure.compile().

regex.match(string)
regex.search(string)
regex.sub(replace, string, count=0, flags=0)

Similar to the module-level functions match(), search() and sub(). Using methods is (much) more efficient
if the same regex is applied to multiple strings.

regex.split(string, max_split=- 1)
Split a string using regex. If max_split is given, it specifies maximum number of splits to perform. Returns list
of strings (there may be up to max_split+1 elements if it’s specified).

Match objects

Match objects as returned by match() and search() methods, and passed to the replacement function in sub().

match.group(index)
Return matching (sub)string. index is 0 for entire match, 1 and above for each capturing group. Only numeric
groups are supported.

Difference for RI5
The base MicroPython version has various methods that the RI5 doesn’t: match.groups(), match.start(), match.end(),
match.span()

1.1.16 uselect – wait for events on a set of streams

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: select.

This module provides functions to efficiently wait for events on multiple streams (select streams which are ready for
operations).

1.1. Python standard libraries and micro-libraries 25

https://docs.python.org/3.5/library/select.html#module-select

MicroPython Lego RI5 Documentation, Release 1.11

Functions

uselect.poll()
Create an instance of the Poll class.

uselect.select(rlist, wlist, xlist[, timeout])
Wait for activity on a set of objects.

This function is provided by some MicroPython ports for compatibility and is not efficient. Usage of Poll is
recommended instead.

class Poll

Methods

poll.register(obj[, eventmask])
Register stream obj for polling. eventmask is logical OR of:

• uselect.POLLIN - data available for reading

• uselect.POLLOUT - more data can be written

Note that flags like uselect.POLLHUP and uselect.POLLERR are not valid as input eventmask (these are un-
solicited events which will be returned from poll() regardless of whether they are asked for). This semantics
is per POSIX.

eventmask defaults to uselect.POLLIN | uselect.POLLOUT.

It is OK to call this function multiple times for the same obj. Successive calls will update obj’s eventmask to the
value of eventmask (i.e. will behave as modify()).

poll.unregister(obj)
Unregister obj from polling.

poll.modify(obj, eventmask)
Modify the eventmask for obj. If obj is not registered, OSError is raised with error of ENOENT.

poll.poll(timeout=- 1)
Wait for at least one of the registered objects to become ready or have an exceptional condition, with optional
timeout in milliseconds (if timeout arg is not specified or -1, there is no timeout).

Returns list of (obj, event, . . .) tuples. There may be other elements in tuple, depending on a platform and
version, so don’t assume that its size is 2. The event element specifies which events happened with a stream
and is a combination of uselect.POLL* constants described above. Note that flags uselect.POLLHUP and
uselect.POLLERR can be returned at any time (even if were not asked for), and must be acted on accordingly
(the corresponding stream unregistered from poll and likely closed), because otherwise all further invocations of
poll() may return immediately with these flags set for this stream again.

In case of timeout, an empty list is returned.

Difference to CPython
Tuples returned may contain more than 2 elements as described above.

poll.ipoll(timeout=- 1, flags=0)
Like poll.poll(), but instead returns an iterator which yields a callee-owned tuple. This function provides
an efficient, allocation-free way to poll on streams.

26 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

If flags is 1, one-shot behavior for events is employed: streams for which events happened will have their event
masks automatically reset (equivalent to poll.modify(obj, 0)), so new events for such a stream won’t be
processed until new mask is set with poll.modify(). This behavior is useful for asynchronous I/O schedulers.

Difference to CPython
This function is a MicroPython extension.

1.1.17 ustruct – pack and unpack primitive data types

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: struct.

Supported size/byte order prefixes: @, <, >, !.

Supported format codes: b, B, h, H, i, I, l, L, q, Q, s, P, f, d.

Functions

ustruct.calcsize(fmt)
Return the number of bytes needed to store the given fmt.

ustruct.pack(fmt, v1, v2, ...)
Pack the values v1, v2, . . . according to the format string fmt. The return value is a bytes object encoding the
values.

ustruct.pack_into(fmt, buffer, offset, v1, v2, ...)
Pack the values v1, v2, . . . according to the format string fmt into a buffer starting at offset. offset may be negative
to count from the end of buffer.

ustruct.unpack(fmt, data)
Unpack from the data according to the format string fmt. The return value is a tuple of the unpacked values.

ustruct.unpack_from(fmt, data, offset=0)
Unpack from the data starting at offset according to the format string fmt. offset may be negative to count from
the end of buffer. The return value is a tuple of the unpacked values.

1.1.18 utime – time related functions

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: time.

The utime module provides functions for getting the current time and date, measuring time intervals, and for delays.

Time Epoch: In contrast to Unix (and the Unix port of Micropython) using 1970-01-01 00:00:00 UTC, embedded
ports including the RI5 use epoch of 2000-01-01 00:00:00 UTC.

Maintaining actual calendar date/time: This requires a Real Time Clock (RTC). On systems with underlying OS
(including some RTOS), an RTC may be implicit. Setting and maintaining actual calendar time is responsibility of
OS/RTOS and is done outside of MicroPython, it just uses OS API to query date/time. On baremetal ports like the
RI5 however system time depends on machine.RTC() object. The current calendar time may be set using machine.
RTC().datetime(tuple) function.

On the RI5, the RTC seems to keep running while the Hub is either switched on or plugged into a USB power source.
When not powered in this way it resets to the value 473385600 seconds, or 2015-01-01 00:00:00 UTC. Also interesting

1.1. Python standard libraries and micro-libraries 27

https://docs.python.org/3.5/library/struct.html#module-struct
https://docs.python.org/3.5/library/time.html#module-time

MicroPython Lego RI5 Documentation, Release 1.11

is that after a reset, the RTC only seems to start counting when it is first used to get the time since Epoch. (Use of
the sleep/ticks functions don’t count, but machine.RTC() functions datetime(), wakeup() and calibration()
do start it going.)

The RI5 doesn’t keep very exact time since its RTC is just based on CPU clock-cycles. The machine.RTC().
calibration() function can be used to better approximate real time, but note that this may require tuning for a
particular system, and the functions below should probably not be relied upon for exact timekeeping without access to
an external time source.

Functions

utime.localtime([secs])
Convert a time expressed in seconds since the Epoch (see above) into an 8-tuple which contains: (year, month,
mday, hour, minute, second, weekday, yearday) If secs is not provided or None, then the current time from the
RTC is used.

• year includes the century (for example 2014).

• month is 1-12

• mday is 1-31

• hour is 0-23

• minute is 0-59

• second is 0-59

• weekday is 0-6 for Mon-Sun

• yearday is 1-366

Note that the RTC time can be successfully set to certain invalid values - I haven’t experimented in detail with
the behaviour of the RTC or this function after such events.

utime.mktime()
This is inverse function of localtime. It’s argument is a full 8-tuple which expresses a time as per localtime. It
returns an integer which is the number of seconds since Jan 1, 2000.

utime.sleep(seconds)
Sleep for the given number of seconds. seconds may be a floating-point number to sleep for a fractional number
of seconds.

utime.sleep_ms(ms)
Delay for given number of milliseconds, should be positive or 0.

utime.sleep_us(us)
Delay for given number of microseconds, should be positive or 0.

utime.ticks_ms()
Returns an increasing millisecond counter with an arbitrary reference point, that wraps around after some value.

The wrap-around value is not explicitly exposed, but we will refer to it as TICKS_MAX to simplify discussion.
Period of the values is TICKS_PERIOD = TICKS_MAX + 1. TICKS_PERIOD is guaranteed to be a power of
two, but otherwise may differ from port to port. On the RI5 it is 0x40000000. The same period value is used for
all of ticks_ms(), ticks_us(), ticks_cpu() functions (for simplicity). Thus, these functions will return a
value in range [0 .. TICKS_MAX], inclusive, total TICKS_PERIOD values. Note that only non-negative values
are used. For the most part, you should treat values returned by these functions as opaque. The only operations
available for them are ticks_diff() and ticks_add() functions described below.

28 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

Note: Performing standard mathematical operations (+, -) or relational operators (<, <=, >, >=) directly on these
value will lead to invalid result. Performing mathematical operations and then passing their results as arguments
to ticks_diff() or ticks_add() will also lead to invalid results from the latter functions.

utime.ticks_us()
Just like ticks_ms() above, but in microseconds.

utime.ticks_cpu()
Similar to ticks_ms() and ticks_us(), but with the highest possible resolution in the system: for RI5 this is
the CPU clock at 100MHz. This function is intended for very fine benchmarking or very tight real-time loops.

utime.ticks_add(ticks, delta)
Offset ticks value by a given number, which can be either positive or negative. Given a ticks value, this func-
tion allows to calculate ticks value delta ticks before or after it, following modular-arithmetic definition of tick
values (see ticks_ms() above). ticks parameter must be a direct result of call to ticks_ms(), ticks_us(),
or ticks_cpu() functions (or from previous call to ticks_add()). However, delta can be an arbitrary integer
number or numeric expression. ticks_add() is useful for calculating deadlines for events/tasks. (Note: you
must use ticks_diff() function to work with deadlines.)

Examples:

Find out what ticks value there was 100ms ago
print(ticks_add(time.ticks_ms(), -100))

Calculate deadline for operation and test for it
deadline = ticks_add(time.ticks_ms(), 200)
while ticks_diff(deadline, time.ticks_ms()) > 0:

do_a_little_of_something()

Find out TICKS_MAX used by this port
print(ticks_add(0, -1))

utime.ticks_diff(ticks1, ticks2)
Measure ticks difference between values returned from ticks_ms(), ticks_us(), or ticks_cpu() functions,
as a signed value which may wrap around.

The argument order is the same as for subtraction operator, ticks_diff(ticks1, ticks2) has the same
meaning as ticks1 - ticks2. However, values returned by ticks_ms(), etc. functions may wrap around,
so directly using subtraction on them will produce incorrect result. That is why ticks_diff() is needed,
it implements modular (or more specifically, ring) arithmetics to produce correct result even for wrap-around
values (as long as they not too distant inbetween, see below). The function returns signed value in the range
[-TICKS_PERIOD/2 .. TICKS_PERIOD/2-1] (that’s a typical range definition for two’s-complement signed bi-
nary integers). If the result is negative, it means that ticks1 occurred earlier in time than ticks2. Otherwise, it
means that ticks1 occurred after ticks2. This holds only if ticks1 and ticks2 are apart from each other for no
more than TICKS_PERIOD/2-1 ticks. If that does not hold, incorrect result will be returned. Specifically, if
two tick values are apart for TICKS_PERIOD/2-1 ticks, that value will be returned by the function. However,
if TICKS_PERIOD/2 of real-time ticks has passed between them, the function will return -TICKS_PERIOD/2
instead, i.e. result value will wrap around to the negative range of possible values.

Informal rationale of the constraints above: Suppose you are locked in a room with no means to monitor passing
of time except a standard 12-notch clock. Then if you look at dial-plate now, and don’t look again for another 13
hours (e.g., if you fall for a long sleep), then once you finally look again, it may seem to you that only 1 hour has
passed. To avoid this mistake, just look at the clock regularly. Your application should do the same. “Too long
sleep” metaphor also maps directly to application behavior: don’t let your application run any single task for too
long. Run tasks in steps, and do time-keeping inbetween.

ticks_diff() is designed to accommodate various usage patterns, among them:

1.1. Python standard libraries and micro-libraries 29

MicroPython Lego RI5 Documentation, Release 1.11

• Polling with timeout. In this case, the order of events is known, and you will deal only with positive results
of ticks_diff():

Wait for GPIO pin to be asserted, but at most 500us
start = time.ticks_us()
while pin.value() == 0:

if time.ticks_diff(time.ticks_us(), start) > 500:
raise TimeoutError

• Scheduling events. In this case, ticks_diff() result may be negative if an event is overdue:

This code snippet is not optimized
now = time.ticks_ms()
scheduled_time = task.scheduled_time()
if ticks_diff(scheduled_time, now) > 0:

print("Too early, let's nap")
sleep_ms(ticks_diff(scheduled_time, now))
task.run()

elif ticks_diff(scheduled_time, now) == 0:
print("Right at time!")
task.run()

elif ticks_diff(scheduled_time, now) < 0:
print("Oops, running late, tell task to run faster!")
task.run(run_faster=true)

Note: Do not pass time() values to ticks_diff(), you should use normal mathematical operations on them.
But note that time() may (and will) also overflow. This is known as https://en.wikipedia.org/wiki/Year_2038_
problem .

utime.time()
Returns the number of seconds, as an integer, since the Epoch, assuming that underlying RTC is set and main-
tained as described above. If you want to develop portable MicroPython application, you should not rely on
this function to provide higher than second precision. If you need higher precision, use ticks_ms() and
ticks_us() functions, if you need calendar time, localtime() without an argument is a better choice.

Difference to CPython
In CPython, this function returns number of seconds since Unix epoch, 1970-01-01 00:00 UTC, as a floating-
point, usually having microsecond precision. With MicroPython, only Unix port uses the same Epoch, and if
floating-point precision allows, returns sub-second precision. Embedded hardware usually doesn’t have floating-
point precision to represent both long time ranges and subsecond precision, so they use integer value with second
precision. Some embedded hardware also lacks battery-powered RTC, so returns number of seconds since last
power-up or from other relative, hardware-specific point (e.g. reset).

30 Chapter 1. MicroPython libraries

https://en.wikipedia.org/wiki/Year_2038_problem
https://en.wikipedia.org/wiki/Year_2038_problem

MicroPython Lego RI5 Documentation, Release 1.11

1.1.19 uzlib – zlib decompression

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: zlib.

This module allows to decompress binary data compressed with DEFLATE algorithm (commonly used in zlib library
and gzip archiver). Compression is not yet implemented.

Functions

uzlib.decompress(data, wbits=0, bufsize=0)
Return decompressed data as bytes. wbits is DEFLATE dictionary window size used during compression (8-15,
the dictionary size is power of 2 of that value). Additionally, if value is positive, data is assumed to be zlib stream
(with zlib header). Otherwise, if it’s negative, it’s assumed to be raw DEFLATE stream. bufsize parameter is for
compatibility with CPython and is ignored.

class uzlib.DecompIO(stream, wbits=0)
Create a stream wrapper which allows transparent decompression of compressed data in another stream. This
allows to process compressed streams with data larger than available heap size. In addition to values described
in decompress(), wbits may take values 24..31 (16 + 8..15), meaning that input stream has gzip header.

Difference to CPython
This class is MicroPython extension. It’s included on provisional basis and may be changed considerably or
removed in later versions.

Current methods of the stream are read(), readinto() and readline().

These libraries do exist in MicroPython, but aren’t in the base docs.

1.1.20 urandom – random number generation

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: random

Difference to CPython
The pseudorandom algorithm used in Micropython is the Yasmarang algorithm , instead of the Mersenne Twister used
in CPython.

This module allows generation of pseudo-random numbers, including setting of a seed. (These are probably not suitable
for cryptographic purposes.)

On the RI5, the random generators do work without calling seed(). It’s not immediately clear what seed is used by the
module in this case, but there’s no obvious repetition in outputs. If you want an explicit seed whose value is relatively
difficult to predict, consider something like utime.ticks_cpu().

1.1. Python standard libraries and micro-libraries 31

https://docs.python.org/3.5/library/zlib.html#module-zlib
https://en.wikipedia.org/wiki/DEFLATE
https://docs.python.org/3.5/library/random.html#module-random
http://www.literatecode.com/yasmarang

MicroPython Lego RI5 Documentation, Release 1.11

Functions

urandom.seed(a)
Initialize the pseudorandom number generator with integer a.

urandom.randrange(stop)

urandom.randrange(start, stop[, step])
Return a randomly selected element from range(stop) or range(start, stop, step).

urandom.randint(a, b)
Return a random integer N between a and b (inclusive).

urandom.getrandbits(n)
Return an integer with n random bits.

urandom.choice(seq)
Return a random element of the given sequence.

urandom.random()
Return a float between 0 and 1 (not including 1).

urandom.uniform(a, b)
Return a float between a and b (b may or may not be included depending on floating-point rounding).

1.2 MicroPython-specific libraries

Functionality specific to the MicroPython implementation is available in the following libraries.

1.2.1 machine— functions related to the hardware

The machine module contains specific functions related to the hardware on a particular board. Most functions in
this module allow to achieve direct and unrestricted access to and control of hardware blocks on a system (like CPU,
timers, buses, etc.). Used incorrectly, this can lead to malfunction, lockups, crashes of your board, and in extreme
cases, hardware damage.

The RI5 version of this module seems to be a lot like the STM32 port of Micropython, as you might expect given that
the RI5 runs on a STM32F413. A lot of the RI5 specifics here line up with the code for that port.

A note of callbacks used by functions and class methods of machine module: all these callbacks should be considered
as executing in an interrupt context. This is true for both physical devices with IDs >= 0 and “virtual” devices with
negative IDs like -1 (these “virtual” devices are still thin shims on top of real hardware and real hardware interrupts).
See Writing interrupt handlers.

Reset related functions

machine.reset()
Resets the device in a manner similar to pushing the external RESET button.

machine.soft_reset()
On RI5, resets to menu with a SystemExit, as though calling sys.exit(). Doesn’t seem to change the re-
set_cause() below.

Difference for RI5

32 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

This function isn’t in the base MicroPython, at least not the version RI5 was branched from. It’s also not clear it
does precisely the same thing as the soft_reset function in the latest base MicroPython version.

machine.reset_cause()
Get the reset cause. See constants for the possible return values. On RI5 it doesn’t seem to report SOFT_RESET,
and PWRON_RESET is only reported when the Hub has been both powered off and unplugged and then powered
up. But the others all seem to work as you’d expect.

Interrupt related functions

machine.disable_irq()
Disable interrupt requests. Returns the previous IRQ state which should be considered an opaque value. This
return value should be passed to the enable_irq() function to restore interrupts to their original state, before
disable_irq() was called.

On the RI5, the return value seems to be True if interrupt requests were successfully disabled, and False if they
weren’t (which you get for example if you try to disable twice without enabling in between).

machine.enable_irq(state)
Re-enable interrupt requests. The state parameter should be the value that was returned from the most recent call
to the disable_irq() function.

On the RI5, the parameter seems to determine whether the system actually tries to enable interrupts or not - i.e.
if False it does nothing. This allows the user to nest calls to disable/enable, but to overlap them in other ways you
would have to keep track of how many disable calls there have been yourself. Note that trying to enable twice
with True parameters in succession seems to crash the system.

Power related functions

machine.freq()

With no parameters, returns CPU frequency in hertz, or sets it with a parameter.

Difference for RI5
See below for RI5-specifics.

In RI5 this actually returns a tuple (S, H, P1, P2) of the various clock speed frequencies of the board. These can
be set by passing one to four parameters to the function. Any unsupplied parameters are set in proportion to their
default relationship to S, so setting freq(S/2) will divide everything by 2.

See STM32F413 board documentation for full details on the four clocks here, but in terms of RI5 observations:

• S = System Clock frequency. On my system, it seems to default to 96000000. Presumably this dictates how
fast the CPU runs.

• H = AHB (Advanced High-Performance Bus) Clock frequency. On my system, it seems to default to
96000000. Possibly controls some aspect of USB, because setting this too low (e.g. 24MHz) seems to
break the connection between RI5 and the app and lead to debug logs showing json messages with characters
doubled or missing. And potentially other dangers - set at your peril!

• P1 = APB1 (Advanced Peripheral Bus 1) Clock frequency. On my system, it seems to default to 24000000.
This seems to control most of the output systems - halving it causes the LED to flicker, and lights and sound
go half as fast. It also has some impact on USB though and maybe some quite key systems too as a further

1.2. MicroPython-specific libraries 33

MicroPython Lego RI5 Documentation, Release 1.11

reduction broke the app connection and had me nervous I’d broken things more seriously for a while. Set
at your peril!

• P2 = APB2 (Advanced Peripheral Bus 2) Clock frequency. On my system, it seems to default to 48000000.
No obvious effect discovered yet.

Frequency changes persist between programs, but go back to defaults on a hard reset.

machine.idle()
Gates the clock to the CPU, useful to reduce power consumption at any time during short or long periods. Periph-
erals continue working and execution resumes as soon as any interrupt is triggered (on many ports this includes
system timer interrupt occurring at regular intervals on the order of millisecond).

Similar to other low-power functions, it’s not clear how much use this is on the RI5. It doesn’t turn off lights etc.

machine.sleep([time_ms])

Note: This function is deprecated, use lightsleep() instead.

machine.lightsleep([time_ms])
machine.deepsleep([time_ms])

Stops execution in an attempt to enter a low power state.

If time_ms is specified then this will be the maximum time in milliseconds that the sleep will last for. Otherwise
the sleep can last indefinitely.

With or without a timout, execution may resume at any time if there are events that require processing. Such
events, or wake sources, should be configured before sleeping, like Pin change or RTC timeout.

The precise behaviour and power-saving capabilities of lightsleep and deepsleep is highly dependent on the
underlying hardware, but the general properties are:

• A lightsleep has full RAM and state retention. Upon wake execution is resumed from the point where the
sleep was requested, with all subsystems operational.

• A deepsleep may not retain RAM or any other state of the system (for example peripherals or network
interfaces). Upon wake execution is resumed from the main script, similar to a hard or power-on reset. The
reset_cause() function will return machine.DEEPSLEEP and this can be used to distinguish a deepsleep
wake from other resets.

Difference for RI5
See below for the specifics of how this works in practice for RI5.

On the RI5, it’s not clear that these are going to be particularly useful.

• Lightsleep seems to potentially cut off the USB connection if you’re running via the Mindstorms app,
requiring you to restart the Hub and then the app to regain connection between the two. It’s possible this is
just a bug.

• Deepsleep obviously restarts the Hub from its startup script which will put you back in the menu unless
you’ve done extensive customization. Although when you run a program after that it is then possible to
check for the DEEPSLEEP reset cause.

• It’s not clear exactly how power-saving these modes are on the RI5. In tests, both seemed to turn the Hub
LED red (or on one weird and memorable occasion, green) for the duration of the sleep.

Difference for RI5

34 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

Function wake_reason() is not implemented for the RI5.

Miscellaneous functions

machine.info([verbose])

Difference for RI5
A function specific to the RI5.

Prints various information, including:

• ID = The hex of the unique_id()

• S = System Clock frequency. See freq() above.

• H = AHB (Advanced High-Performance Bus) Clock frequency. See freq() above.

• P1 = APB1 (Advanced Peripheral Bus 1) Clock frequency. See freq() above.

• P2 = APB2 (Advanced Peripheral Bus 2) Clock frequency. See freq() above.

• “qstr” section with similar information to micropython.qstr_info()

• “GC” section with similar information to micropython.mem_info()

• If the verbose parameter is defined then it also prints the GC memory layout that you get from
mem_info()’s verbose mode.

machine.unique_id()
Returns a byte string with a unique identifier of a board/SoC. It will vary from a board/SoC instance to another,
if underlying hardware allows. Length varies by hardware (so use substring of a full value if you expect a short
ID). In some MicroPython ports, ID corresponds to the network MAC address.

machine.time_pulse_us(pin, pulse_level, timeout_us=1000000)
Time a pulse on the given pin, and return the duration of the pulse in microseconds. The pulse_level argument
should be 0 to time a low pulse or 1 to time a high pulse.

If the current input value of the pin is different to pulse_level, the function first (*) waits until the pin input
becomes equal to pulse_level, then (**) times the duration that the pin is equal to pulse_level. If the pin is
already equal to pulse_level then timing starts straight away.

The function will return -2 if there was timeout waiting for condition marked (*) above, and -1 if there was
timeout during the main measurement, marked (**) above. The timeout is the same for both cases and given by
timeout_us (which is in microseconds).

Difference for RI5
Function rng() is not implemented for the RI5.

1.2. MicroPython-specific libraries 35

MicroPython Lego RI5 Documentation, Release 1.11

Memory Access

machine.mem8
machine.mem16
machine.mem32

Supports machine memory access in 1-byte, 2-byte or 4-byte chunks. Access is via indexing, where the index
is the memory address of the beginning of the chunk. (Attempts to use a wrongly aligned address for the chunk
size cause a ValueError.)

Beware that slicing doesn’t work properly and may cause a system failure!

On the RI5, be aware that 0 is a valid address: addressable memory goes from 0 to 1572863 (=0x17FFFF) inclu-
sive, representing 1.5 MiB. Attempting to reference addresses outside of this causes a system restart. Addresses
from 0x08a670 seem to all return 0xFF values though so I’m not sure how useful anything above this is. . .

The system lets you attempt to set address contents with memX[index] = value, but it doesn’t seem to be
effective - subsequent reads just show the old value again.

Constants

Difference for RI5
IRQ wake value constants and wake-up reason constants are not present on the RI5.

machine.PWRON_RESET
machine.HARD_RESET
machine.WDT_RESET
machine.DEEPSLEEP_RESET
machine.SOFT_RESET

Reset causes.

Classes

class Pin – control I/O pins

A pin object is used to control I/O pins (also known as GPIO - general-purpose input/output). Pin objects are commonly
associated with a physical pin that can drive an output voltage and read input voltages. The pin class has methods to
set the mode of the pin (IN, OUT, etc) and methods to get and set the digital logic level. For analog control of a pin,
see the ADC class.

A pin object is constructed by using an identifier which unambiguously specifies a certain I/O pin. The allowed form of
the identifier in the RI5 case is a string that specifies the board-name or cpu-name of the pin. Pins can also be selected
via the cpu and board convenience classes within Pin.

Usage Model:

from machine import Pin

create an output pin on pin X0
p0 = Pin('X0', Pin.OUT)

set the value low then high
p0.value(0)

(continues on next page)

36 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

(continued from previous page)

p0.value(1)

create an input pin on pin X1, with a pull up resistor
p2 = Pin('X1', Pin.IN, Pin.PULL_UP)

read and print the pin value
print(p2.value())

reconfigure pin X0 in input mode
p0.mode(p0.IN)

configure an irq callback
p0.irq(lambda p:print(p))

Constructors

class machine.Pin(id)

class machine.Pin(id, mode, pull=None, af=-1, * value, alt=-1)
Access the pin peripheral (GPIO pin) associated with the given id. If additional arguments are given in the
constructor then they are used to initialise the pin. If no settings are specified they will remain in their previous
state.

The arguments are:

• id is mandatory and can be either an existing Pin object or a string that identifies one. String identifiers
can be either the cpu-name or the board-name of a Pin.

• mode specifies the pin mode, which can be one of:

– Pin.IN - Pin is configured for input (i.e. for getting values from the outside world into the CPU). If
viewed as an output the pin is in high-impedance state.

– Pin.OUT - Pin is configured for (normal) output (i.e. for letting the program set values).

– Pin.OPEN_DRAIN - Pin is configured for open-drain output. Open-drain output works in the following
way: if the output value is set to 0 the pin is active at a low level; if the output value is 1 the pin is in a
high-impedance state. Some pins may not implement this mode.

– Pin.ALT - Pin is configured to perform an alternative function. Available alt-functions are specific to
particular pins. For a pin configured in such a way any other Pin methods (except Pin.init()) are
not necessarily applicable (calling them will lead to undefined, or a hardware-specific, result).

– Pin.ALT_OPEN_DRAIN - The Same as Pin.ALT, but the pin is configured as open-drain. Not all ports
implement this mode.

– Pin.ANALOG - The pin is configured as an analog input/output instead of digital, and voltages will be
read instead of binary 0/1 states. Use the ADC class instead of the functions below on pins in this mode.
Some pins may not implement this mode.

• pull specifies if the pin has a (weak) pull resistor attached, and can be one of:

– None/Pin.PULL_NONE - No pull up or down resistor.

– Pin.PULL_UP - Pull up resistor enabled.

– Pin.PULL_DOWN - Pull down resistor enabled.

1.2. MicroPython-specific libraries 37

MicroPython Lego RI5 Documentation, Release 1.11

• af is a legacy (positional) alternative to alt with exactly the same values - the other parameter takes
precedence over it.

• value is valid only for Pin.OUT and Pin.OPEN_DRAIN modes and specifies initial output pin value if
given, otherwise the state of the pin peripheral remains unchanged.

• alt specifies an alternate function for the pin. The values it can take are 0-15, although whether these
will do anything is pin-dependent. The alt argument is valid only for Pin.ALT and Pin.ALT_OPEN_DRAIN
modes and must be specified for those modes. For other modes it is ignored.

As specified above, the Pin class allows to set an alternate function or analog mode for a particular pin, but it
does not specify any further operations on such a pin. Pins configured in alternate-function or analog mode are
usually not used as GPIO but are instead driven by other hardware peripherals. Sometimes they may be usable
with other machine subclasses. The only Pin operation supported on such a pin is re-initialising, by calling the
constructor or Pin.init() method. If a pin that is configured in alternate-function mode is re-initialised with
Pin.IN, Pin.OUT, or Pin.OPEN_DRAIN, the alternate function will be removed from the pin.

Methods

Pin.init(mode, pull=None, af=-1 *, value, alt=-1)
Re-initialise the pin using the given parameters. If value is unspecified, it will not be set, but the other arguments
are always set (to the defaults where suitable).

See the constructor documentation for details of the arguments.

Returns None.

Note that since this is modifying hardware state, changing parameters here will be reflected in any other objects
referencing the same physical pin.

Pin.value([x])
This method allows to set and get the value of the pin, depending on whether the argument x is supplied or not.

If the argument is omitted then this method gets the digital logic level of the pin, returning 0 or 1 corresponding
to low and high voltage signals respectively. The behaviour of this method depends on the mode of the pin:

• Pin.IN - The method returns the actual input value currently present on the pin.

• Pin.OUT - The behaviour and return value of the method is undefined.

• Pin.OPEN_DRAIN - If the pin is in state ‘0’ then the behaviour and return value of the method is undefined.
Otherwise, if the pin is in state ‘1’, the method returns the actual input value currently present on the pin.

If the argument is supplied then this method sets the digital logic level of the pin. The argument x can be anything
that converts to a boolean. If it converts to True, the pin is set to state ‘1’, otherwise it is set to state ‘0’. The
behaviour of this method depends on the mode of the pin:

• Pin.IN - The value is stored in the output buffer for the pin. The pin state does not change, it remains in the
high-impedance state. The stored value will become active on the pin as soon as it is changed to Pin.OUT
or Pin.OPEN_DRAIN mode.

• Pin.OUT - The output buffer is set to the given value immediately.

• Pin.OPEN_DRAIN - If the value is ‘0’ the pin is set to a low voltage state. Otherwise the pin is set to
high-impedance state.

When setting the value this method returns None.

Behaviour is undefined always for pins in ALT or ANALOG modes.

38 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

Pin.__call__([x])
Pin objects are callable. The call method provides a (fast) shortcut to set and get the value of the pin. It is
equivalent to Pin.value([x]). See Pin.value() for more details.

Pin.on()

Pin.high()
Set pin to “1” output level.

Pin.off()

Pin.low()
Set pin to “0” output level.

Pin.mode()
Returns the pin mode in numeric form. See the constructor documentation for details of the mode argument.
Unlike base MicroPython, the STM32 port doesn’t let you set mode with this method.

Pin.pull()
Returns the pin pull state in numeric form. See the constructor documentation for details of the pull argument.
Unlike base MicroPython, the STM32 port doesn’t let you set pull with this method.

Pin.irq(handler=None, trigger=Pin.IRQ_FALLING | Pin.IRQ_RISING, hard=False)
Configure an interrupt handler to be called when the trigger source of the pin is active. If the pin mode is Pin.IN
then the trigger source is the external value on the pin. If the pin mode is Pin.OUT then the trigger source is the
output buffer of the pin. Otherwise, if the pin mode is Pin.OPEN_DRAIN then the trigger source is the output
buffer for state ‘0’ and the external pin value for state ‘1’.

The arguments (all optional and can be positonal or named) are:

• handler is an optional function to be called when the interrupt triggers. The handler must take exactly one
argument which is the Pin instance.

• trigger configures the event which can generate an interrupt. Possible values are:

– Pin.IRQ_FALLING interrupt on falling edge.

– Pin.IRQ_RISING interrupt on rising edge.

These values can be OR’ed together to trigger on multiple events.

• hard if true a hardware interrupt is used. This reduces the delay between the pin change and the handler
being called. Hard interrupt handlers may not allocate memory; see Writing interrupt handlers.

This method returns None. Since it doesn’t return any kind of IRQ object, there’s no way to turn the IRQ off again
(presumably even when the program exits) so this function will probably be of limited use on the RI5 unless you
want permanent control of a pin until the system is reset. And that’s assuming you can make this work - all my
attempts at using this function either did nothing (on pins that had constant value) or crashed the system!

Pin.name()
Returns the pin name. (This will be the CPU-based form.)

Pin.names()
Returns a list containing the cpu- and board-based names for the pin in that order.

Pin.af_list()
Returns an array of alternate functions available for this pin, in the form of constants like Pin.AF1_TIM1 and
Pin.AF5_I2S4.

Pin.port()
Returns the pin port in numeric form. (A=0 to H=7)

Pin.pin()
Returns the pin number. (The 0-15 number of the pin that comes after the port letter.)

1.2. MicroPython-specific libraries 39

MicroPython Lego RI5 Documentation, Release 1.11

Pin.gpio()
Returns the base address of the GPIO block associated with this pin.

Pin.af()
Returns the currently configured alternate function of the pin in numeric form. This will match one of the allowed
constants for the af argument to init().

Class methods

Difference for RI5
These three functions define global behaviour which persists past the end of a program back into the hub menu, and so
could conceivably cause future programs to break.

Pin.mapper([map_function])
Given a parameter, stores a global mapping function, which should be a function that takes a single string and
returns a pin object. (ValueError is thrown if it returns something else.) Once specified this function takes
precedence over the default way of mapping strings to Pins. It may return None, at which point other lookup
types are attempted.

With no parameter it returns the current mapper function.

Pin.dict(mapping_dict)
Given a parameter, specifies a global dictionary to be used to map strings to pin objects. If specified, this method
of mapping takes precedence over the default way of mapping strings to Pins. But the mapper function takes
precedence over this.

Note that nothing checks the output of this mapping to make sure it’s actually returning a Pin object.

With no parameter it returns the current mapping dictionary.

Pin.debug(debug_info)
Sets global debug information on/off according to the boolean debug_info. Debug information (printed to
stsandard output stream) tells you more about how a given string is mapped to a Pin object.

Classes

class machine.board

class machine.cpu
Two classes containing constant objects for all the pins on the system. In the cpu class these take the raw form
cpu.A0 to cpu.H1. (Port letter plus pin number.) In the board class most are just named board.PA0 to board.PH1,
but some have been translated into more meaningful names: A1 = board.BUTTON3_SW, A11 = board.USB_DM,
A12 = board.USB_DP, A14 = board.TEST_LED.

Difference for RI5
The more meaningful board names here appear to be unique to the RI5, or at least I couldn’t find other sources
for them all online.

40 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

Constants

The following constants are used to configure the pin objects.

Pin.IN = 0
Pin.OUT = 1
Pin.OPEN_DRAIN = 17
Pin.ALT = 2
Pin.ALT_OPEN_DRAIN = 18
Pin.ANALOG = 3

Selects the pin mode.

Pin.PULL_NONE = 0
Pin.PULL_UP = 1
Pin.PULL_DOWN = 2

Selects whether there is a pull up/down resistor.

Pin.IRQ_FALLING = 0x10210000
Pin.IRQ_RISING = 0x10110000

Selects the IRQ trigger type.

Pin.OUT_PP = 1
Pin.OUT_OD = 17
Pin.AF_PP = 2
Pin.AF_OD = 18

Legacy constants (synonyms for pin modes above).

Pin.AFx_*
Lots of constants describing the possible alternate functions. These match the alternate function numbers de-
scribed at https://github.com/micropython/micropython/blob/master/ports/stm32/boards/stm32f413_af.csv or
at least the subset that this board supports.

class Signal – control and sense external I/O devices

The Signal class is a simple extension of the Pin class. Unlike Pin, which can be only in “absolute” 0 and 1 states, a
Signal can be in “asserted” (on) or “deasserted” (off) states, while being inverted (active-low) or not. In other words, it
adds logical inversion support to Pin functionality. While this may seem a simple addition, it is exactly what is needed
to support wide array of simple digital devices in a way portable across different boards, which is one of the major
MicroPython goals. Regardless of whether different users have an active-high or active-low LED, a normally open
or normally closed relay - you can develop a single, nicely looking application which works with each of them, and
capture hardware configuration differences in few lines in the config file of your app.

Example:

from machine import Pin, Signal

Suppose you have an active-high LED on pin 0
led1_pin = Pin(0, Pin.OUT)
... and active-low LED on pin 1
led2_pin = Pin(1, Pin.OUT)

Now to light up both of them using Pin class, you'll need to set
them to different values
led1_pin.value(1)
led2_pin.value(0)

(continues on next page)

1.2. MicroPython-specific libraries 41

https://github.com/micropython/micropython/blob/master/ports/stm32/boards/stm32f413_af.csv

MicroPython Lego RI5 Documentation, Release 1.11

(continued from previous page)

Signal class allows to abstract away active-high/active-low
difference
led1 = Signal(led1_pin, invert=False)
led2 = Signal(led2_pin, invert=True)

Now lighting up them looks the same
led1.value(1)
led2.value(1)

Even better:
led1.on()
led2.on()

Following is the guide when Signal vs Pin should be used:

• Use Signal: If you want to control a simple on/off (including software PWM!) devices like LEDs, multi-segment
indicators, relays, buzzers, or read simple binary sensors, like normally open or normally closed buttons, pulled
high or low, Reed switches, moisture/flame detectors, etc. etc. Summing up, if you have a real physical de-
vice/sensor requiring GPIO access, you likely should use a Signal.

• Use Pin: If you implement a higher-level protocol or bus to communicate with more complex devices.

The split between Pin and Signal come from the usecases above and the architecture of MicroPython: Pin offers the
lowest overhead, which may be important when bit-banging protocols. But Signal adds additional flexibility on top of
Pin, at the cost of minor overhead (much smaller than if you implemented active-high vs active-low device differences
in Python manually!). Also, Pin is a low-level object which needs to be implemented for each support board, while
Signal is a high-level object which comes for free once Pin is implemented.

If in doubt, give the Signal a try! Once again, it is offered to save developers from the need to handle unexciting
differences like active-low vs active-high signals, and allow other users to share and enjoy your application, instead of
being frustrated by the fact that it doesn’t work for them simply because their LEDs or relays are wired in a slightly
different way.

Constructors

class machine.Signal(pin_obj, invert=False)
class machine.Signal(pin_arguments..., *, invert=False)

Create a Signal object. There’re two ways to create it:

• By wrapping existing Pin object - universal method which works for any board.

• By passing required Pin parameters directly to Signal constructor, skipping the need to create intermediate
Pin object.

The arguments are:

• pin_obj is existing Pin object.

• pin_arguments are the same arguments as can be passed to Pin constructor.

• invert - if True, the signal will be inverted (active low).

42 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

Methods

Signal.value([x])
This method allows to set and get the value of the signal, depending on whether the argument x is supplied or
not.

If the argument is omitted then this method gets the signal level, 1 meaning signal is asserted (active) and 0 -
signal inactive.

If the argument is supplied then this method sets the signal level. The argument x can be anything that converts
to a boolean. If it converts to True, the signal is active, otherwise it is inactive.

Correspondence between signal being active and actual logic level on the underlying pin depends on whether
signal is inverted (active-low) or not. For non-inverted signal, active status corresponds to logical 1, inactive - to
logical 0. For inverted/active-low signal, active status corresponds to logical 0, while inactive - to logical 1.

Signal.on()
Activate signal.

Signal.off()
Deactivate signal.

class ADC – analog to digital conversion

Read analog values from a pin.

Difference for RI5
Functions channel() (and associated class), init() and deinit() are not implemented for the RI5. Instead the
read_u16() function allows analog reading, and the constants below are added too.

Constructors

class machine.ADC(channel)
Create an ADC object with the given channel (a signed integer). This allows you to then read analog values on
that channel. It’s not clear to me yet what sources most of these channels represent - every one I tried did receive
data from somewhere. . . The constants below seem to represent a few important ones though.

class machine.ADC(pin)
Create an ADC object from the given Pin object/pin name string.

On the RI5, this seems to be possible only on pins A0, B0, B1, C0-5 (although using it on C2 or C3 seems to
conflict with something in the firmware, causing runtime errors after use).

1.2. MicroPython-specific libraries 43

MicroPython Lego RI5 Documentation, Release 1.11

Methods

machine.read_u16()
Read the current channel value.

Constants

Channel numbers to get particular information from.

machine.ADC.VREF = 65535
According to the STM32 port code, this channel just constantly reports the maximum ADC value, which seems
to be 65535.

machine.ADC.CORE_VREF = 17
Perhaps this is core voltage data? In a test it seemed to get a variety of values of the form 0x3??3 (from 0x3B23
to 0x3CB3) and 0x4??4 (from 0x4274 to 0x45A4).

machine.ADC.CORE_TEMP = 16
Presumably gets core temperature sensor data. Running at room temperature I was seeing integer values around
11026 (0x2B12), varying in multiples of 16 to around +-200. Possibly the last hex digit is not relevant given the
fact that it always seems to be the same as the first in these readings?

machine.ADC.CORE_VBAT = 18
Presumably this gets battery charge or voltage level data? In a test it seemed to get integer values around 2768
(0x0AD0), varying in multiples of 16 to around +-150. Possibly the last hex digit is not relevant given the fact
that it always seems to be the same as the first in these readings?

Other Experiments

Experiments often showed slightly different initial values settling down to a more steady range of values. I also found
the sources for the rest of the channels below 16, apart from channel 1:

A0 for a while reported values from 0x1341 to 0x1501. Printing the ADC showed it’s probably equal to channel 0 (i.e.
ADC(0)).

A2 for a while reported values from 0x1001 to 0x1041. It presents as channel 2.

A3 for a while reported values from 0x11A1 to 0x12B1. It presents as channel 3.

A4 for a while reported values from 0x1041 to 0x1101. It presents as channel 4.

A5 for a while reported values from 0x1181 to 0x12A1. It presents as channel 5.

A6 for a while reported values from 0x0FB0 to 0x1011. It presents as channel 6.

A7 for a while reported values from 0x1241 to 0x1391. It presents as channel 7.

B0 for a while reported values from 0x25C2 to 0x2672. It presents as channel 8.

B1 for a while reported values from 0x11C1 to 0x1471. It presents as channel 9.

C0 for a while reported values from 0x10F1 to 0x1221. It presents as channel 10.

C1 for a while reported values from 0x3003 to 0x3173 and on another occasion reported values from 0xB23B to
0xBA8B. It presents as channel 11.

C2 for a while reported values from 0x1331 to 0x1EA1. It presents as channel 12. Although if you access channel 12
directly you tend to get much lower values it seems, and no runtime errors. . .

44 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

C3 gave two much higher readings of 0xAFEA and 0x2152, then settled down into lower readings between 0x1241 and
0x1551. It presents as channel 13, but if you access channel 12 directly you tend to get much lower values it seems,
and no runtime errors. . .

C4 for a while reported values from 0xA0AA to 0xCA9C. It presents as channel 14.

C5 gave one much higher reading of 0x4E94, then for a while reported values from 0x0860 to 0x0AB0. It presents as
channel 15.

class UART – duplex serial communication bus

UART implements the standard UART/USART duplex serial communications protocol. At the physical level it consists
of 2 lines: RX and TX. The unit of communication is a character (not to be confused with a string character) which
can be 8 or 9 bits wide.

UART objects can be created and initialised using:

from machine import UART

uart = UART(1, 9600) # init with given baudrate
uart.init(9600, bits=8, parity=None, stop=1) # init with given parameters

Supported parameters differ on different boards.

On the RI5, it appears that no UARTs are actually available - at least I couldn’t find an ID that would allow me to
create one. So available parameters are unknown and the rest of this section is a little light on RI5-specific detail as
it’s difficult to do experiments when you can’t create the base object! It’s based on the STM32 port code instead since
that’ll probably be quite similar. . .

A UART object acts like a stream object and reading and writing is done using the standard stream methods:

uart.read(10) # read 10 characters, returns a bytes object
uart.read() # read all available characters
uart.readline() # read a line
uart.readinto(buf) # read and store into the given buffer
uart.write('abc') # write the 3 characters

Constructors

class machine.UART(id, ...)
Construct a UART object of the given id. Any additional parameters are passed on to the init function.

Methods

UART.init(baudrate=9600, bits=8, parity=None, stop=1, *, ...)
Initialise the UART bus with the given parameters:

• baudrate is the clock rate.

• bits is the number of bits per character. Can be 8 or 9.

• parity is the parity, None, 0 (even) or 1 (odd).

• stop is the number of stop bits, 1 or 2.

• timeout is the timeout in milliseconds to wait for the first character.

1.2. MicroPython-specific libraries 45

MicroPython Lego RI5 Documentation, Release 1.11

• timeout_char is the timeout in milliseconds to wait between characters.

• flow is RTS | CTS where RTS == 256, CTS == 512

• read_buf_len is the character length of the read buffer (0 to disable).

UART.deinit()
Turn off the UART bus.

UART.any()
Returns an integer counting the number of characters that can be read without blocking. It will return 0 if there
are no characters available and a positive number if there are characters. The method may return 1 even if there
is more than one character available for reading.

For more sophisticated querying of available characters use select.poll:

poll = select.poll()
poll.register(uart, select.POLLIN)
poll.poll(timeout)

UART.read([nbytes])
Read characters. If nbytes is specified then read at most that many bytes, otherwise read as much data as
possible.

Return value: a bytes object containing the bytes read in. Returns None on timeout.

UART.readinto(buf [, nbytes])
Read bytes into the buf. If nbytes is specified then read at most that many bytes. Otherwise, read at most
len(buf) bytes.

Return value: number of bytes read and stored into buf or None on timeout.

UART.readline()
Read a line, ending in a newline character.

Return value: the line read or None on timeout.

UART.readchar()
Receive a single character, and return it as an integer (or -1 on timeout).

UART.write(buf)
Write the buffer of bytes to the bus.

Return value: number of bytes written or None on timeout.

UART.writechar(char)
Write a single character to the bus. char is the integer to write. Returns None.

UART.sendbreak()
Send a break condition on the bus. This drives the bus low for a duration longer than required for a normal
transmission of a character.

UART.irq(trigger=0, hard=False, handler=None)
Create a callback to be triggered when data is received on the UART.

• trigger can only be UART.IRQ_RXIDLE

• hard seems to specify whether it’s a hardware or software interrupt?

• handler an optional function to be called when new characters arrive.

Note: The handler will be called whenever any of the following two conditions are met:

• 8 new characters have been received.

46 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

• At least 1 new character is waiting in the Rx buffer and the Rx line has been silent for the duration of 1
complete frame.

This means that when the handler function is called there will be between 1 to 8 characters waiting.

Returns an irq object.

Constants

UART.RTS = 256
Flow parameter setting for initialization.

UART.CTS = 512
Flow parameter setting for initialization.

UART.IRQ_RXIDLE = 16
IRQ flag “idle”. (Replaces UART.RX_ANY from the base documentation.)

class SPI – a Serial Peripheral Interface bus protocol (master side)

SPI is a synchronous serial protocol that is driven by a master. At the physical level, a bus consists of 3 lines: SCK,
MOSI, MISO. Multiple devices can share the same bus. Each device should have a separate, 4th signal, SS (Slave
Select), to select a particular device on a bus with which communication takes place. Management of an SS signal
should happen in user code (via machine.Pin class).

Constructors

class machine.SPI(id=-1, ...)
Construct an SPI object on the given bus, id. Values of id depend on a particular port and its hardware. Values
0, 1, etc. are commonly used to select hardware SPI block #0, #1, etc. Value -1 can be used for bitbanging
(software) implementation of SPI. In this case sck/mosi/miso parameters must be specified.

Any extra parameters are passed to init().

Difference for RI5
Unlike the specification in the base MicroPython docs, this constructor seems to always call init(), whether or
not more parameters are provided to it.

Difference for RI5
The hardware SPI blocks on the RI5 and their default details are shown below. Pin details aren’t printed when
printing the object, so they’ve been deduced from machine.Pin() printing and https://github.com/micropython/
micropython/blob/master/ports/stm32/boards/stm32f413_af.csv.

All SPIs have default baudrate=375000, polarity=0, phase=0, bits=8. Be careful with altering or deinitializing
any of these, as any changes will persist beyond the life of your program, and can cause system failure.

SPI(1) - MISO=A6, MOSI=A7, SCK=A5, NSS=A4 or A15(?). No obvious effect if you slow it down or speed
it up, but if you deinit it, the system slows to a crawl. . . A basic read gets the following set of bytes followed by
zeros: 0,0,0,0,0,0,0x2F,0xC0,0,0,0,0,0x11,0x80,0x23,0,0x7F,0x80.

1.2. MicroPython-specific libraries 47

https://github.com/micropython/micropython/blob/master/ports/stm32/boards/stm32f413_af.csv
https://github.com/micropython/micropython/blob/master/ports/stm32/boards/stm32f413_af.csv

MicroPython Lego RI5 Documentation, Release 1.11

SPI(2) - MISO=C2, MOSI=C3, SCK=B13, NSS=A11 or B9 or B12(?). Seems to affect lots of systems like the
screen/sound/lights/program loading if you slow it down. . . A basic read gets all zeros.

SPI(3) - MISO=B4, MOSI=B5, SCK=B3 or B12 or C10(?), NSS=A4 or A15(?). No obvious effect if you slow
it down or deinit it. A basic read gets one zero and times out if you read more than one byte at a time.

Methods

SPI.init(baudrate=500000, *, polarity=0, phase=0, bits=8, firstbit=SPI.MSB, sck=None, mosi=None,
miso=None)

Initialise the SPI bus with the given parameters:

• baudrate is the SCK clock rate. Note that the default value isn’t an available hardware baudrate, so those
actually default to 375000 in practice.

• polarity can be 0 or 1, and is the level the idle clock line sits at. (Although it can actually take any byte
value.)

• phase can be 0 or 1 to sample data on the first or second clock edge respectively. (Although it can actually
take any byte value.)

• bits is the width in bits of each transfer. Must be 8.

• firstbit must be SPI.MSB (0).

• sck, mosi, miso are pins (machine.Pin) objects (or strings naming pins) to use for bus signals. For most
hardware SPI blocks (as selected by id parameter to the constructor), pins are fixed and cannot be changed.
In some cases, hardware blocks allow 2-3 alternative pin sets for a hardware SPI block. Arbitrary pin
assignments are possible only for a bitbanging SPI driver (id = -1).

The actual clock frequency may be lower than the requested baudrate. They are rounded down to the nearest
available one. On RI5:

Hardware baudrates: 12000000, 6000000, 3000000, 1500000, 750000, 375000, 187500, 93750

Software baudrates = 16000000/(32*N) = 500000, 250000, 166666, 125000, 100000, 83333, . . . , 1

The actual rate may be determined by printing the SPI object.

SPI.deinit()
Turn off the SPI bus.

SPI.read(nbytes, write=0)
Read a number of bytes specified by nbytes while continuously writing the single byte given by write. Returns
a bytes object with the data that was read.

SPI.readinto(buf, write=0)
Read into the buffer specified by buf while continuously writing the single byte given by write. Returns None.

SPI.write(buf)
Write the bytes contained in buf. Returns None.

SPI.write_readinto(write_buf, read_buf)
Write the bytes from write_buf while reading into read_buf. The buffers can be the same or different, but
both buffers must have the same length. Returns None.

48 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

Constants

SPI.MSB = 0
set the first bit to be the most significant bit

SPI.LSB = 128
Set the first bit to be the least significant bit. (Cannot be used on RI5.)

class I2C – a two-wire serial protocol

I2C is a two-wire protocol for communicating between devices. At the physical level it consists of 2 wires: SCL and
SDA, the clock and data lines respectively.

I2C objects are created attached to a specific bus. They can be initialised when created, or initialised later on.

Printing the I2C object gives you information about its configuration.

Example usage:

from machine import I2C

i2c = I2C(freq=400000) # create I2C peripheral at frequency of 400kHz
(in this port, actually scl and sda parameters also␣

→˓required)

i2c.scan() # scan for slaves, returning a list of 7-bit addresses

i2c.writeto(42, b'123') # write 3 bytes to slave with 7-bit address 42
i2c.readfrom(42, 4) # read 4 bytes from slave with 7-bit address 42

i2c.readfrom_mem(42, 8, 3) # read 3 bytes from memory of slave 42,
starting at memory-address 8 in the slave

i2c.writeto_mem(42, 2, b'\x10') # write 1 byte to memory of slave 42
starting at address 2 in the slave

Constructors

class machine.I2C(id=-1, *, scl, sda, freq=400000, timeout=?)
Construct and return a new I2C object using the following parameters:

• id identifies a particular I2C peripheral. The default value of -1 selects a software implementation of I2C
which can work (in most cases) with arbitrary pins for SCL and SDA. If id is -1 then scl and sda must be
specified. Other allowed values for id on the RI5 are 1 and 3 (see below) - in these cases specifying scl/sda
is not allowed, and freq seems to be ignored.

• scl should be a pin object/string specifying the pin to use for SCL.

• sda should be a pin object/string specifying the pin to use for SDA.

• freq should be an integer which sets the maximum frequency for SCL.

• the timeout parameter isn’t documented in base MicroPython, so it’s not quite clear what it’s meant to do
or what the default is.

Printing I2C(1) or I2C(3) shows its pin/freq details, printing a custom I2C shows nothing much.

1.2. MicroPython-specific libraries 49

MicroPython Lego RI5 Documentation, Release 1.11

Setting a custom I2C on the same pins as a pre-existing one is accepted, but it does seem to modify behaviour of
the pre-existing one. (Though so far that’s meant just different error codes in my experiments - ETIMEDOUT
rather than ENODEV/EINVAL.)

I2C ids on the RI5

• I2C(1, scl=B6, sda=B7, freq=480000)

• I2C(3, scl=A8, sda=C9, freq=480000)

General Methods

I2C.init(scl, sda, *, freq=400000)
Initialise the I2C bus with the given arguments:

• scl is a pin object or string name of a pin for the SCL line

• sda is a pin object or string name of a pin for the SDA line

• freq is the SCL clock rate

It’s not clear whether user-defined I2Cs on RI5 can actually have parameters successfully changed with this
function. Certainly attempting to use this function on I2C(1) or I2C(3) causes system failure.

Difference for RI5
Function deinit() to turn off the bus is not available on RI5.

I2C.scan()
Scan all I2C addresses between 0x08 and 0x77 inclusive and return a list of those that respond. A device responds
if it pulls the SDA line low after its address (including a write bit) is sent on the bus.

On RI5, scans of I2C(1) and I2C(3) seem to just return [].

Primitive I2C operations

The following methods implement the primitive I2C master bus operations and can be combined to make any I2C
transaction. They are provided if you need more control over the bus, otherwise the standard methods (see below) can
be used.

These methods are available on software I2C only. They tend to throw an OSError of ETIMEDOUT if things aren’t set
up correctly to accept I2C commands.

I2C.start()
Generate a START condition on the bus (SDA transitions to low while SCL is high).

I2C.stop()
Generate a STOP condition on the bus (SDA transitions to high while SCL is high).

I2C.readinto(buf, nack=True)
Reads bytes from the bus and stores them into buf. The number of bytes read is the length of buf. An ACK will
be sent on the bus after receiving all but the last byte. After the last byte is received, if nack is true then a NACK
will be sent, otherwise an ACK will be sent (and in this case the slave assumes more bytes are going to be read
in a later call).

50 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

I2C.write(buf)
Write the bytes from buf to the bus. Checks that an ACK is received after each byte and stops transmitting the
remaining bytes if a NACK is received. The function returns the number of ACKs that were received.

Standard bus operations

The following methods implement the standard I2C master read and write operations that target a given slave device.

I2C.readfrom(addr, nbytes, stop=True)
Read nbytes from the slave specified by addr. If stop is true then a STOP condition is generated at the end of the
transfer. Returns a bytes object with the data read.

I2C.readfrom_into(addr, buf, stop=True)
Read into buf from the slave specified by addr. The number of bytes read will be the length of buf. If stop is
true then a STOP condition is generated at the end of the transfer.

The method returns None.

I2C.writeto(addr, buf, stop=True)
Write the bytes from buf to the slave specified by addr. If a NACK is received following the write of a byte from
buf then the remaining bytes are not sent. If stop is true then a STOP condition is generated at the end of the
transfer, even if a NACK is received. The function returns the number of ACKs that were received.

I2C.writevto(addr, vector, stop=True)
Write the bytes contained in vector to the slave specified by addr. vector should be a tuple or list of objects
with the buffer protocol. The addr is sent once and then the bytes from each object in vector are written out
sequentially. The objects in vector may be zero bytes in length in which case they don’t contribute to the output.

If a NACK is received following the write of a byte from one of the objects in vector then the remaining bytes,
and any remaining objects, are not sent. If stop is true then a STOP condition is generated at the end of the
transfer, even if a NACK is received. The function returns the number of ACKs that were received.

Memory operations

Some I2C devices act as a memory device (or set of registers) that can be read from and written to. In this case there are
two addresses associated with an I2C transaction: the slave address and the memory address. The following methods
are convenience functions to communicate with such devices.

I2C.readfrom_mem(addr, memaddr, nbytes, *, addrsize=8)
Read nbytes from the slave specified by addr starting from the memory address specified by memaddr. The
argument addrsize specifies the address size in bits. Returns a bytes object with the data read.

I2C.readfrom_mem_into(addr, memaddr, buf, *, addrsize=8)
Read into buf from the slave specified by addr starting from the memory address specified by memaddr. The
number of bytes read is the length of buf. The argument addrsize specifies the address size in bits.

The method returns None.

I2C.writeto_mem(addr, memaddr, buf, *, addrsize=8)
Write buf to the slave specified by addr starting from the memory address specified by memaddr. The argument
addrsize specifies the address size in bits.

The method returns None.

1.2. MicroPython-specific libraries 51

MicroPython Lego RI5 Documentation, Release 1.11

class RTC – real time clock

The RTC is an independent clock that keeps track of the date and time. As noted in the utime module, it defaults to
2015-01-01 00:00:00 UTC and only seems to start running when it’s used (calling any of the functions below except
info() will start it running.)

Example usage:

rtc = machine.RTC()
rtc.datetime((2014, 5, 1, 4, 13, 0, 0, 0))
print(rtc.datetime())

Constructors

class machine.RTC
Create an RTC object.

Methods

RTC.datetime([datetimetuple])
Get or set the date and time of the RTC.

With no arguments, this method returns an 8-tuple with the current date and time. With 1 argument (being an
8-tuple) it sets the date and time (and subseconds is reset to 255).

The 8-tuple has the following format:

(year, month, day, weekday, hours, minutes, seconds, subseconds)

weekday is 1-7 for Monday through Sunday.

subseconds counts down from 255 to 0

Very little error-checking seems to be done on the input values so be aware that the RTC will try to work with
whatever you give it, with potentially undefined results. It won’t successfully set years below 2000 though.

RTC.wakeup(timeout, callback=None)
Set the RTC wakeup timer to trigger repeatedly at every timeout milliseconds.

If timeout is None then the wakeup timer is disabled.

If callback is given then it is executed at every trigger of the wakeup timer. callback must take exactly one
argument. It’s not clear what this does - it appears to be uninitialised on entry.

RTC.info()
Get information about the startup time and reset source. If the RTC hasn’t yet been started, this seems to take
value 1056964608 (= 0x3F000000). Otherwise, it’s not quite clear what the value means - in experiments it
always seems to have high bit 0x20000000 set, and then some value in the lower 0xFFFF. Base MicroPython
docs claim:

• The lower 0xffff are the number of milliseconds the RTC took to start up.

• Bit 0x10000 is set if a power-on reset occurred.

• Bit 0x20000 is set if an external reset occurred

But on the RI5 I’ve seen lower bit values of 16658 and 27119 which don’t seem to correspond to a startup time. . .

52 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

RTC.calibration(cal)
Get or set RTC calibration.

With no arguments, calibration() returns the current calibration value, which is an integer in the range [-511
: 512]. With one argument it sets the RTC calibration.

The RTC Smooth Calibration mechanism adjusts the RTC clock rate by adding or subtracting the given number
of ticks from the 32768 Hz clock over a 32 second period (corresponding to 2^20 clock ticks.) Each tick added
will speed up the clock by 1 part in 2^20, or 0.954 ppm; likewise the RTC clock it slowed by negative values.
The usable calibration range is: (-511 * 0.954) ~= -487.5 ppm up to (512 * 0.954) ~= 488.5 ppm

Default calibration on the RI5 is 0, although it’s presumably likely to vary by system (and maybe even vary over
time?) what value is best to make the RTC approximate real time.

class Timer – control hardware timers

Hardware timers deal with timing of periods and events. Timers are perhaps the most flexible and heterogeneous kind
of hardware in MCUs and SoCs, differently greatly from a model to a model. MicroPython’s Timer class defines a
baseline operation of executing a callback with a given period (or once after some delay), and allow specific boards to
define more non-standard behavior (which thus won’t be portable to other boards).

See discussion of important constraints on Timer callbacks.

Note: Memory can’t be allocated inside irq handlers (an interrupt) and so exceptions raised within a handler don’t give
much information. See micropython.alloc_emergency_exception_buf() for how to get around this limitation.

Difference for RI5
This Timer class seems to be a bit broken in RI5, or at least it doesn’t play nicely with the firmware - system failures
that require pulling the battery and USB seem almost inevitable when trying to use init(), deinit() or Timer.
PERIODIC. (Basically the only thing that will work is a Timer that’s initialized on construction, runs once and then is
discarded.) Periodic Timers will work, but of course you can’t shut them off successfully and they will still try to pop
after the program has ended, causing (you guessed it) system failure.

What you’d use instead seems a bit dependent on other requirements of your program - there’s no obvious drop-in
replacement for all circumstances.

Constructors

class machine.Timer(id=-1, ...)
Construct a new virtual timer object. Id must equal -1 or be omitted. If more arguments are provided, this runs
the init() function with them, causing the timer to be started. See init() below for a list.

Difference for RI5
Base MicroPython allows for various positive id values, specifying particular hardware timers. The RI5 seems
to only allow -1 for a virtual timer, and the number may alternatively be omitted entirely.

In RI5 the only way to run init() successfully seems to be via this constructor - running the constructor with
no extra parameters seems to leave the Timer in a weird half-initialized state that will cause system failure if you
try to run init() or deinit() on it subsequently.

1.2. MicroPython-specific libraries 53

MicroPython Lego RI5 Documentation, Release 1.11

Methods

Timer.init(*, mode=Timer.PERIODIC, period=-1, callback=None, freq=None)
Initialise the timer. Example:

tim.init(period=100) # periodic with 100ms period
tim.init(mode=Timer.ONE_SHOT, period=1000) # one shot firing after 1000ms

Keyword arguments:

• mode can be one of:

– Timer.ONE_SHOT - The timer runs once until the configured period of the channel expires.

– Timer.PERIODIC - The timer runs periodically at the configured frequency of the channel.

• freq

• period

If specified, freq indicates the Hz frequency of when the timer will pop. Otherwise, period sets the
number of milliseconds until the pop. A negative or zero value period or frequency causes an immediate
pop.

• callback

Specifies a function to run when the timer pops. This function must have one positional argument, which
will be passed the Timer when it pops.

Difference for RI5
The STM32 port of Micropython (on which this seems to be based) has some extra possible arguments for this
function for fuller control over how the Timer works.

Difference for RI5
Note as above - calling this function on any existing Timer on the RI5 (whether it’s stopped or started) causes
system failure! Use the constructor only, or give up on this class for the moment.

Timer.deinit()
Deinitialises the timer. Stops the timer.

Difference for RI5
Note as above - calling this function on any existing Timer on the RI5 (whether it’s stopped or started) causes
system failure! If you need a Timer that can be halted, you’ll have to find something else for the moment.

54 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

Constants

Timer.ONE_SHOT = 1
Timer.PERIODIC = 2

Timer operating mode.

class WDT – watchdog timer

The WDT is used to restart the system when the application crashes and ends up into a non recoverable state. Once
started it cannot be stopped or reconfigured in any way. After enabling, the application must “feed” the watchdog
periodically to prevent it from expiring and resetting the system.

Note that on the RI5, the WDT will continue running after a program ends, and it will still reset the system if it expires
during another program or in the menu system. A hard reset will get rid of it though.

Example usage:

from machine import WDT
wdt = WDT(timeout=2000) # enable it with a timeout of 2s
wdt.feed()

Constructors

class machine.WDT(id=0, timeout=5000)
Create a WDT object and start it. The timeout must be given in seconds and the minimum value that is accepted
is 1 second. Once it is running the timeout cannot be changed and the WDT cannot be stopped either.

Methods

wdt.feed()
Feed the WDT to prevent it from resetting the system. The application should place this call in a sensible place
ensuring that the WDT is only fed after verifying that everything is functioning correctly.

On the RI5, note that if you’ve used a particular WDT before ever, feeding it starts it running, even if it wasn’t
running after a reset! The system seems to remember that a WDT has been used even after a full power off,
although it may reset to the default timeout.

Classes from default Micropython not present on the Hub

• class ADCChannel - read analog values from internal or external sources

• class SD - secure digital memory card

1.2. MicroPython-specific libraries 55

MicroPython Lego RI5 Documentation, Release 1.11

1.2.2 micropython – access and control MicroPython internals

Functions

micropython.const(expr)
Used to declare that the expression is a constant so that the compile can optimise it. The use of this function
should be as follows:

from micropython import const

CONST_X = const(123)
CONST_Y = const(2 * CONST_X + 1)

Constants declared this way are still accessible as global variables from outside the module they are declared
in. On the other hand, if a constant begins with an underscore then it is hidden, it is not available as a global
variable, and does not take up any memory during execution.

This const function is recognised directly by the MicroPython parser and is provided as part of the
micropython module mainly so that scripts can be written which run under both CPython and MicroPython,
by following the above pattern.

micropython.opt_level([level])
If level is given then this function sets the optimisation level for subsequent compilation of scripts, and returns
None. Otherwise it returns the current optimisation level.

The optimisation level controls the following compilation features:

• Assertions: at level 0 assertion statements are enabled and compiled into the bytecode; at levels 1 and
higher assertions are not compiled.

• Built-in __debug__ variable: at level 0 this variable expands to True; at levels 1 and higher it expands to
False.

• Source-code line numbers: at levels 0, 1 and 2 source-code line number are stored along with the bytecode
so that exceptions can report the line number they occurred at; at levels 3 and higher line numbers are not
stored.

The default optimisation level is usually level 0.

micropython.alloc_emergency_exception_buf(size)
Allocate size bytes of RAM for the emergency exception buffer (a good size is around 100 bytes). The buffer is
used to create exceptions in cases when normal RAM allocation would fail (eg within an interrupt handler) and
therefore give useful traceback information in these situations.

A good way to use this function is to put it at the start of your main script (eg boot.py or main.py) and then
the emergency exception buffer will be active for all the code following it.

micropython.mem_info([verbose])
Print information about currently used memory. If the verbose argument is given then extra information is printed.

The information that is printed is implementation dependent, but currently includes the amount of stack and heap
used. In verbose mode it prints out the entire heap indicating which blocks are used and which are free.

micropython.qstr_info([verbose])
Print information about currently interned strings. If the verbose argument is given then extra information is
printed.

The information that is printed is implementation dependent, but currently includes the number of interned strings
and the amount of RAM they use. In verbose mode it prints out the names of all RAM-interned strings.

56 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

micropython.stack_use()
Return an integer representing the current amount of stack that is being used. The absolute value of this is not
particularly useful, rather it should be used to compute differences in stack usage at different points.

micropython.pystack_use()
An undocumented base-Micropython function. Return an integer presumably representing the current amount
of stack being used by the “Pystack”. I’m not sure whether that’s a subset of the other stack or separate though!
Or what the difference is. . .

micropython.heap_lock()

micropython.heap_unlock()
Lock or unlock the heap. When locked no memory allocation can occur and a MemoryError will be raised if
any heap allocation is attempted.

These functions can be nested, ie heap_lock() can be called multiple times in a row and the lock-depth will
increase, and then heap_unlock() must be called the same number of times to make the heap available again.

If the REPL becomes active with the heap locked then it will be forcefully unlocked.

micropython.kbd_intr(chr)
Set the character that will raise a KeyboardInterrupt exception. By default this is set to 3 during script
execution, corresponding to Ctrl-C. Passing -1 to this function will disable capture of Ctrl-C, and passing 3 will
restore it.

This function can be used to prevent the capturing of Ctrl-C on the incoming stream of characters that is usually
used for the REPL, in case that stream is used for other purposes.

micropython.schedule(func, arg)
Schedule the function func to be executed “very soon”. The function is passed the value arg as its single argument.
“Very soon” means that the MicroPython runtime will do its best to execute the function at the earliest possible
time, given that it is also trying to be efficient, and that the following conditions hold:

• A scheduled function will never preempt another scheduled function.

• Scheduled functions are always executed “between opcodes” which means that all fundamental Python
operations (such as appending to a list) are guaranteed to be atomic.

• A given port may define “critical regions” within which scheduled functions will never be executed. Func-
tions may be scheduled within a critical region but they will not be executed until that region is exited. An
example of a critical region is a preempting interrupt handler (an IRQ).

A use for this function is to schedule a callback from a preempting IRQ. Such an IRQ puts restrictions on the
code that runs in the IRQ (for example the heap may be locked) and scheduling a function to call later will lift
those restrictions.

Note: If schedule() is called from a preempting IRQ, when memory allocation is not allowed and the callback
to be passed to schedule() is a bound method, passing this directly will fail. This is because creating a reference
to a bound method causes memory allocation. A solution is to create a reference to the method in the class
constructor and to pass that reference to schedule(). This is discussed in detail here reference documentation
under “Creation of Python objects”.

There is a finite stack to hold the scheduled functions and schedule() will raise a RuntimeError if the stack
is full.

1.2. MicroPython-specific libraries 57

MicroPython Lego RI5 Documentation, Release 1.11

1.2.3 uctypes – access binary data in a structured way

This module implements “foreign data interface” for MicroPython. The idea behind it is similar to CPython’s ctypes
modules, but the actual API is different, streamlined and optimized for small size. The basic idea of the module is
to define data structure layout with about the same power as the C language allows, and then access it using familiar
dot-syntax to reference sub-fields.

Warning: uctypesmodule allows access to arbitrary memory addresses of the machine (including I/O and control
registers). Uncareful usage of it may lead to crashes, data loss, and even hardware malfunction.

See also:
Module ustruct Standard Python way to access binary data structures (doesn’t scale well to large and complex struc-

tures).

Usage examples:

import uctypes

Example 1: Subset of ELF file header
https://wikipedia.org/wiki/Executable_and_Linkable_Format#File_header
ELF_HEADER = {

"EI_MAG": (0x0 | uctypes.ARRAY, 4 | uctypes.UINT8),
"EI_DATA": 0x5 | uctypes.UINT8,
"e_machine": 0x12 | uctypes.UINT16,

}

"f" is an ELF file opened in binary mode
buf = f.read(uctypes.sizeof(ELF_HEADER, uctypes.LITTLE_ENDIAN))
header = uctypes.struct(uctypes.addressof(buf), ELF_HEADER, uctypes.LITTLE_ENDIAN)
assert header.EI_MAG == b"\x7fELF"
assert header.EI_DATA == 1, "Oops, wrong endianness. Could retry with uctypes.BIG_ENDIAN.
→˓"
print("machine:", hex(header.e_machine))

Example 2: In-memory data structure, with pointers
COORD = {

"x": 0 | uctypes.FLOAT32,
"y": 4 | uctypes.FLOAT32,

}

STRUCT1 = {
"data1": 0 | uctypes.UINT8,
"data2": 4 | uctypes.UINT32,
"ptr": (8 | uctypes.PTR, COORD),

}

Suppose you have address of a structure of type STRUCT1 in "addr"
uctypes.NATIVE is optional (used by default)
struct1 = uctypes.struct(addr, STRUCT1, uctypes.NATIVE)
print("x:", struct1.ptr[0].x)

(continues on next page)

58 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

(continued from previous page)

Example 3: Access to CPU registers. Subset of STM32F4xx WWDG block
WWDG_LAYOUT = {

"WWDG_CR": (0, {
BFUINT32 here means size of the WWDG_CR register
"WDGA": 7 << uctypes.BF_POS | 1 << uctypes.BF_LEN | uctypes.BFUINT32,
"T": 0 << uctypes.BF_POS | 7 << uctypes.BF_LEN | uctypes.BFUINT32,

}),
"WWDG_CFR": (4, {

"EWI": 9 << uctypes.BF_POS | 1 << uctypes.BF_LEN | uctypes.BFUINT32,
"WDGTB": 7 << uctypes.BF_POS | 2 << uctypes.BF_LEN | uctypes.BFUINT32,
"W": 0 << uctypes.BF_POS | 7 << uctypes.BF_LEN | uctypes.BFUINT32,

}),
}

WWDG = uctypes.struct(0x40002c00, WWDG_LAYOUT)

WWDG.WWDG_CFR.WDGTB = 0b10
WWDG.WWDG_CR.WDGA = 1
print("Current counter:", WWDG.WWDG_CR.T)

Defining structure layout

Structure layout is defined by a “descriptor” - a Python dictionary which encodes field names as keys and other prop-
erties required to access them as associated values:

{
"field1": <properties>,
"field2": <properties>,
...

}

Currently, uctypes requires explicit specification of offsets for each field. Offset are given in bytes from the structure
start.

Following are encoding examples for various field types:

• Scalar types:

"field_name": offset | uctypes.UINT32

in other words, the value is a scalar type identifier ORed with a field offset (in bytes) from the start of the structure.

• Recursive structures:

"sub": (offset, {
"b0": 0 | uctypes.UINT8,
"b1": 1 | uctypes.UINT8,

})

i.e. value is a 2-tuple, first element of which is an offset, and second is a structure descriptor dictionary (note:
offsets in recursive descriptors are relative to the structure it defines). Of course, recursive structures can be
specified not just by a literal dictionary, but by referring to a structure descriptor dictionary (defined earlier) by
name.

1.2. MicroPython-specific libraries 59

MicroPython Lego RI5 Documentation, Release 1.11

• Arrays of primitive types:

"arr": (offset | uctypes.ARRAY, size | uctypes.UINT8),

i.e. value is a 2-tuple, first element of which is ARRAY flag ORed with offset, and second is scalar element type
ORed number of elements in the array.

• Arrays of aggregate types:

"arr2": (offset | uctypes.ARRAY, size, {"b": 0 | uctypes.UINT8}),

i.e. value is a 3-tuple, first element of which is ARRAY flag ORed with offset, second is a number of elements
in the array, and third is a descriptor of element type.

• Pointer to a primitive type:

"ptr": (offset | uctypes.PTR, uctypes.UINT8),

i.e. value is a 2-tuple, first element of which is PTR flag ORed with offset, and second is a scalar element type.

• Pointer to an aggregate type:

"ptr2": (offset | uctypes.PTR, {"b": 0 | uctypes.UINT8}),

i.e. value is a 2-tuple, first element of which is PTR flag ORed with offset, second is a descriptor of type pointed
to.

• Bitfields:

"bitf0": offset | uctypes.BFUINT16 | lsbit << uctypes.BF_POS | bitsize << uctypes.
→˓BF_LEN,

i.e. value is a type of scalar value containing given bitfield (typenames are similar to scalar types, but prefixes
with BF), ORed with offset for scalar value containing the bitfield, and further ORed with values for bit position
and bit length of the bitfield within the scalar value, shifted by BF_POS and BF_LEN bits, respectively. A
bitfield position is counted from the least significant bit of the scalar (having position of 0), and is the number
of right-most bit of a field (in other words, it’s a number of bits a scalar needs to be shifted right to extract the
bitfield).

In the example above, first a UINT16 value will be extracted at offset 0 (this detail may be important when
accessing hardware registers, where particular access size and alignment are required), and then bitfield whose
rightmost bit is lsbit bit of this UINT16, and length is bitsize bits, will be extracted. For example, if lsbit is 0 and
bitsize is 8, then effectively it will access least-significant byte of UINT16.

Note that bitfield operations are independent of target byte endianness, in particular, example above will access
least-significant byte of UINT16 in both little- and big-endian structures. But it depends on the least significant
bit being numbered 0. Some targets may use different numbering in their native ABI, but uctypes always uses
the normalized numbering described above.

60 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

Module contents

class uctypes.struct(addr, descriptor, layout_type=NATIVE)
Instantiate a “foreign data structure” object based on structure address in memory, descriptor (encoded as a
dictionary), and layout type (see below).

uctypes.LITTLE_ENDIAN
Layout type for a little-endian packed structure. (Packed means that every field occupies exactly as many bytes
as defined in the descriptor, i.e. the alignment is 1).

uctypes.BIG_ENDIAN
Layout type for a big-endian packed structure.

uctypes.NATIVE
Layout type for a native structure - with data endianness and alignment conforming to the ABI of the system on
which MicroPython runs.

uctypes.sizeof(struct, layout_type=NATIVE)
Return size of data structure in bytes. The struct argument can be either a structure class or a specific instantiated
structure object (or its aggregate field).

uctypes.addressof(obj)
Return address of an object. Argument should be bytes, bytearray or other object supporting buffer protocol (and
address of this buffer is what actually returned).

uctypes.bytes_at(addr, size)
Capture memory at the given address and size as bytes object. As bytes object is immutable, memory is actually
duplicated and copied into bytes object, so if memory contents change later, created object retains original value.

uctypes.bytearray_at(addr, size)
Capture memory at the given address and size as bytearray object. Unlike bytes_at() function above, memory
is captured by reference, so it can be both written too, and you will access current value at the given memory
address.

uctypes.UINT8
uctypes.INT8
uctypes.UINT16
uctypes.INT16
uctypes.UINT32
uctypes.INT32
uctypes.UINT64
uctypes.INT64

Integer types for structure descriptors. Constants for 8, 16, 32, and 64 bit types are provided, both signed and
unsigned.

uctypes.FLOAT32
uctypes.FLOAT64

Floating-point types for structure descriptors.

uctypes.VOID
VOID is an alias for UINT8, and is provided to conviniently define C’s void pointers: (uctypes.PTR, uctypes.
VOID).

uctypes.PTR
uctypes.ARRAY

Type constants for pointers and arrays. Note that there is no explicit constant for structures, it’s implicit: an
aggregate type without PTR or ARRAY flags is a structure.

uctypes.BFUINT8
uctypes.BFINT8

1.2. MicroPython-specific libraries 61

MicroPython Lego RI5 Documentation, Release 1.11

uctypes.BFUINT16
uctypes.BFINT16
uctypes.BFUINT32
uctypes.BFINT32
uctypes.BFUINT64
uctypes.BFINT64
uctypes.BF_POS
uctypes.BF_LEN

Types for bitfield operation - see above.

Structure descriptors and instantiating structure objects

Given a structure descriptor dictionary and its layout type, you can instantiate a specific structure instance at a given
memory address using uctypes.struct() constructor. Memory address usually comes from following sources:

• Predefined address, when accessing hardware registers on a baremetal system. Lookup these addresses in
datasheet for a particular MCU/SoC.

• As a return value from a call to some FFI (Foreign Function Interface) function.

• From uctypes.addressof(), when you want to pass arguments to an FFI function, or alternatively, to access
some data for I/O (for example, data read from a file or network socket).

Structure objects

Structure objects allow accessing individual fields using standard dot notation: my_struct.substruct1.field1. If
a field is of scalar type, getting it will produce a primitive value (Python integer or float) corresponding to the value
contained in a field. A scalar field can also be assigned to.

If a field is an array, its individual elements can be accessed with the standard subscript operator [] - both read and
assigned to.

If a field is a pointer, it can be dereferenced using [0] syntax (corresponding to C * operator, though [0] works in C
too). Subscripting a pointer with other integer values but 0 are also supported, with the same semantics as in C.

Summing up, accessing structure fields generally follows the C syntax, except for pointer dereference, when you need
to use [0] operator instead of *.

Limitations

1. Accessing non-scalar fields leads to allocation of intermediate objects to represent them. This means that special
care should be taken to layout a structure which needs to be accessed when memory allocation is disabled (e.g. from
an interrupt). The recommendations are:

• Avoid accessing nested structures. For example, instead of mcu_registers.peripheral_a.register1, de-
fine separate layout descriptors for each peripheral, to be accessed as peripheral_a.register1. Or just
cache a particular peripheral: peripheral_a = mcu_registers.peripheral_a. If a register consists of
multiple bitfields, you would need to cache references to a particular register: reg_a = mcu_registers.
peripheral_a.reg_a.

• Avoid other non-scalar data, like arrays. For example, instead of peripheral_a.register[0] use
peripheral_a.register0. Again, an alternative is to cache intermediate values, e.g. register0 =
peripheral_a.register[0].

2. Range of offsets supported by the uctypes module is limited. The exact range supported is considered an imple-
mentation detail, and the general suggestion is to split structure definitions to cover from a few kilobytes to a few dozen

62 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

of kilobytes maximum. In most cases, this is a natural situation anyway, e.g. it doesn’t make sense to define all registers
of an MCU (spread over 32-bit address space) in one structure, but rather a peripheral block by peripheral block. In
some extreme cases, you may need to split a structure in several parts artificially (e.g. if accessing native data structure
with multi-megabyte array in the middle, though that would be a very synthetic case).

These libraries do exist in MicroPython, but aren’t in the base docs.

1.2.4 utimeq – heap queue with times

Difference to CPython
This is a MicroPython specific module. It’s based on heapq but its implementation is more specialized than that, and
it’s not possible to use list operations like indexing on it.

This module uses the heap queue algorithm (priority queue algorithm) to create a heap queue where entries are popped
based on which has the earliest time.

Classes

class utimeq.utimeq(n)
Create a utimeq heap queue with space for n entries. This size is static, and an attempt to push too many entries
onto it will throw an IndexError with message ‘queue overflow’.

The queue sorts itself by entries’ time parameters, and then by the order in which entries were pushed for entries
with equal times. So entries with lower time parameters get popped first, and for entries with the same time the
first only that was pushed gets popped first.

The heap queue can be tested for non-emptiness with “if(heap)”.

push(time, obj, userdata)
Push an entry onto the heap queue.

• The time parameter should be a number of ticks (see the utime module) compatible with utime.
ticks_diff().

• The obj and userdata parameters are not used internally, so the user can set them to anything. (The
underlying MicroPython code suggests a callback and its arguments.)

pop(list)
Takes the entry with lowest time off the heap queue. Populates the first three items of the given list (which
must already exist) with:

• The entry’s time.

• The entry’s obj.

• The entry’s userdata.

Returns None.

peektime()
Returns the time of the current top item (i.e. the one that will be popped next) but without popping it.

1.2. MicroPython-specific libraries 63

https://docs.python.org/3.5/library/heapq.html#module-heapq

MicroPython Lego RI5 Documentation, Release 1.11

1.2.5 _onewire – OneWire Protocol

This module allows sending and receiving of data on a Pin according to the OneWire protocol.

Functions which take a pin argument expect an argument that can be used to reference a Pin, i.e. something you can
feed to the machine.Pin() function. In the RI5’s case, this is a str.

Functions

_onewire.reset(pin)
Does a OneWire reset on the given pin. Returns true if a device presence pulse was detected, otherwise false.

_onewire.readbit(pin)
Reads and returns a single bit from the given pin, assuming the Onewire protocol.

_onewire.readbyte(pin)
Reads 8 bits from the given pin using the Onewire protocol, then returns them as an integer. (Assumes a low-
bit-first model.)

_onewire.writebit(pin, bitval)
Writes a single bit with value bitval to the given pin, assuming the Onewire protocol.

_onewire.writebyte(pin, byteval)
From byte byteval, writes 8 bits to the given pin using the Onewire protocol. (Assumes a low-bit-first model.)

_onewire.crc8(bytearray)
Computes the 8-bit CRC-remainder of the given bytearray (or other buffered object). As expected for the Onewire
protocol, it seems to use the CRC-8/MAXIM version.

1.3 MicroPython default libraries unavailable

Some default MicroPython functionality is missing from the Hub:

• usocket

• ussl

• _thread

• btree

• framebuf

• network

• ucryptolib

And some undocumented MicroPython modules that aren’t in RI5:

• bluetooth

• lwip

• uasyncio (but note that the RI5 does have the async keyword)

• uwebsocket

• webrepl

64 Chapter 1. MicroPython libraries

https://en.wikipedia.org/wiki/1-Wire

MicroPython Lego RI5 Documentation, Release 1.11

1.4 Libraries specific to the Technic Hub

Difference for RI5
The following libraries are not found in default MicroPython. As such, documentation is mainly based on experimen-
tation and internet sources since no code sources are available.

The following libraries are specific to the Technic Hub and are built into its Micropython.

1.4.1 hub – hub brick functionality

Classes and functions related to simple parts and abilities of the Hub brick itself, like buttons, ports, and internal
sensors.

These are lower-level functions than the API ones (the API seems to import this module a lot) and as such they provide
greater control, although with a corresponding amount of risk of things going wrong if you use them improperly.

Constants

hub.__version__ = v1.0.06.0034-b0c335b

Functions

hub.info(???)
???

hub.power_off(???)
???

hub.repl_restart(???)
???

hub.status(???)
???

hub.led(???)
???

hub.temperature(???)
???

hub.file_transfer(???)
???

1.4. Libraries specific to the Technic Hub 65

MicroPython Lego RI5 Documentation, Release 1.11

Imports

• Class util.constants.Image

Objects and Classes

It’s not quite clear from MicroPython help text whether these are classes or instances of classes. For the moment I’m
assuming both, since some have different names from the object they point to. But if that’s the case it’s not clear where
the class lives!

hub.port

class hub.Port(???)
???

Constants
DETACHED = 0

???

ATTACHED = 1
???

A = Port(A)

B = Port(B)

C = Port(C)

D = Port(D)

E = Port(E)

F = Port(F)
???

MODE_DEFAULT = 0
???

MODE_FULL_DUPLEX = 1
???

MODE_HALF_DUPLEX = 2
???

MODE_GPIO = 3
???

Port(X)
These are objects in their own right, with the following contents:

Methods .. method:: callback(???)

???

info(???)
???

mode(???)
???

pwm(???)
???

66 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

Variables .. data:: device

??? Observed value: None

motor
??? Observed value: None

hub.display

class hub.Display(???)
???

pixel(???)
???

show(???)
???

callback(???)
???

clear(???)
???

rotation(???)
???

hub.button

class hub.Button(???)
???

Members
center = center

left = left

right = right

connect = connect
Represent each of the four buttons on the Hub (the main button in the center, left, right, and the bluetooth
connect button). The values are objects with the following contents:

is_pressed(???)
???

was_pressed(???)
???

presses(???)
???

callback(???)
???

on_change(???)
???

hub.sound

class hub.Sound(???)
???

Methods

1.4. Libraries specific to the Technic Hub 67

MicroPython Lego RI5 Documentation, Release 1.11

volume(???)
???

beep(???)
???

play(???)
???

callback(???)
???

Constants
SOUND_SIN = 0

???

SOUND_SQUARE = 1
???

SOUND_TRIANGLE = 2
???

SOUND_SAWTOOTH = 3
???

hub.motion

class hub.Motion(???)
???

Methods
gyroscope(???)

???

gyroscope_filter(???)
???

accelerometer(???)
???

accelerometer_filter(???)
???

position(???)
???

reset_yaw(???)
???

preset_yaw(???)
???

orientation(???)
???

gesture(???)
???

was_gesture(???)
???

callback(???)
???

68 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

Constants
NONE = NULL

???

LEFTSIDE = leftside
???

RIGHTSIDE = rightside
???

DOWN = down
???

UP = up
???

FRONT = front
???

BACK = back
???

TAPPED = tapped
???

DOUBLETAPPED = doubletapped
???

SHAKE = shake
???

FREEFALL = freefall
???

hub.battery

class hub.Battery(???)
???

Methods
voltage(???)

???

current(???)
???

temperature(???)
???

charger_detect(???)
???

info(???)
???

capacity_left(???)
???

Constants
BATTERY_NO_ERROR = 0

???

1.4. Libraries specific to the Technic Hub 69

MicroPython Lego RI5 Documentation, Release 1.11

BATTERY_HUB_TEMPERATURE_CRITICAL_OUT_OF_RANGE = -2
???

BATTERY_TEMPERATURE_OUT_OF_RANGE = -2
???

BATTERY_TEMPERATURE_SENSOR_FAIL = -3
???

BATTERY_BAD_BATTERY = -4
???

BATTERY_VOLTAGE_TOO_LOW = -5
???

USB_CH_PORT_NONE = 0
???

USB_CH_PORT_SDP = 1
???

USB_CH_PORT_CDP = 2
???

USB_CH_PORT_DCP = 3
???

CHARGER_STATE_FAIL = -1
???

CHARGER_STATE_DISCHARGING = 0
???

CHARGER_STATE_CHARGING_ONGOING = 1
???

CHARGER_STATE_CHARGING_COMPLETED = 2
???

hub.bluetooth

class hub.bt(???)
???

info(???)
???

discoverable(???)
???

hub.ble

class hub.bluetooth(???)
???

rssi(???)
???

mac(???)
???

scan(???)
???

70 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

scan_result(???)
???

connect(???)
???

callback(???)
???

hub.supervision

class hub.supervision(???)
???

info(???)
???

hub.BT_VCP

class hub.BT_VCP(???)
???

setinterrupt(???)
???

isconnected(???)
???

any(???)
???

send(???)
???

recv(???)
???

read(???)
???

readinto(???)
???

readline(???)
???

readlines(???)
???

write(???)
???

close(???)
???

__del__(???)
???

__enter__(???)
???

__exit__(???)
???

1.4. Libraries specific to the Technic Hub 71

MicroPython Lego RI5 Documentation, Release 1.11

callback(???)
???

hub.USB_VCP

class hub.USB_VCP(???)
??? Has all the same contents as BT_VCP, with these extras:

Methods
init(???)

???

Constants
RTS = 1

???

CTS = 2
???

1.4.2 firmware – Firmware information and loading

Warning: By definition, a lot of the functions in here are probably quite dangerous to run as they can rewrite
firmware. I haven’t experimented with all of them so I can’t even tell you which will cause system crashes, and
which will be worse. . . Presumably this is the sort of thing you’ll be wanting to run only if you want to load on a
custom firmware. If you’re doing that, feel free to add details on the functions and the exact dangers of using them!

See https://github.com/gpdaniels/spike-prime/issues/7 for some more (but currently still quite limited) details.

Functions

firmware.info()
Returns a dictionary containing various details about the firmware. For the version in this branch with no changes,
it returns:

{‘appl_checksum’: 1231192444, ‘new_appl_image_stored_checksum’: 0, ‘appl_calc_checksum’: 1231192444,
‘new_appl_valid’: False, ‘new_appl_image_calc_checksum’: 0, ‘new_image_size’: 0, ‘currently_stored_bytes’:
0, ‘upload_finished’: True, ‘spi_flash_size’: ‘32 MBytes’, ‘valid’: 0}

firmware.appl_checksum()
Returns a checksum of the firmware. For the version in this branch with no changes, that’s 1231192444.

firmware.appl_image_initialise(???params???)
(Unknown - I wasn’t confident I could run it safely. I suspect this might potentially be quite dangerous, at least if
you’ve stored something in the image store at any point beforehand. Seems to take up to 1 positional argument.)

firmware.appl_image_store(???params???)
(Unknown - I wasn’t confident I could run it safely. Seems to take up to 1 positional argument.)

firmware.appl_image_read(start_pos?)
Returns a bytearray - seems to return empty ones by default for all integer inputs. My hypothesis is that you’re
supposed to store an image in here with the appl_image_store() function and then appl_image_initialise() it to
start running with it, but is this the whole firmware or just some particular necessary part of it that’s different to
what you might write with flash_write()?

I’m also hypothesising based on flash_read that the parameter is probably the byte to start reading at, and it
returns empty bytearrays when there’s no bytes stored to read.

72 Chapter 1. MicroPython libraries

https://github.com/gpdaniels/spike-prime/issues/7

MicroPython Lego RI5 Documentation, Release 1.11

firmware.flash_read(start_pos)
Returns a bytearray of 32 bytes of the flash memory, starting at the given byte.

firmware.flash_write(???)
(Unknown - I wasn’t confident I could run it safely. Some internet research suggests this is the particularly
dangerous one, so maybe don’t try this at home unless you’ve got the cash for another hub! Seems to take 2
positional arguments - perhaps position to write and data to write in some order?)

firmware.ext_flash_read_length()
Seems to crash the hub or at least make it unresponsive until after a battery pull or two. Not sure what it was
trying to do!

firmware.ext_flash_erase()
(Unknown - I wasn’t confident I could run it safely. Probably another quite dangerous one?)

firmware.erase_superblock()
(Unknown - I wasn’t confident I could run it safely. The link at the top says that this erases the filesystem from
the hub.)

firmware.bootloader_version()
Returns a string specifying bootloader version. For the version in this branch with no changes, that’s
‘v0.5.01.0002-f75d82d’.

The following libraries are specific to the Technic Hub and are found in its filesystem.

1.4.3 _api – user API

This module contains most of the API functions that you’re meant to call to operate the system as a user. The module
itself is actually a backend to modules mindstorms – Mindstorms branding of the user API and spike – Spike Prime
branding of the user API , which are nearly identical and seem to exist mainly in order to correctly brand the Hub in
documentation (i.e. so that Mindstorms docs can tell you to import mindstorms, and Spike Prime docs can tell you to
import spike).

One interesting note is that submodule large_technic_hub only seems to appear in this module after you’ve imported
either mindstorms – Mindstorms branding of the user API or spike – Spike Prime branding of the user API , so it’s
probably better to just use one of those unless you have very odd requirements.

All of the classes within the submodules (except LargeTechnicHub) are aliased in the main namespace for convenience.

Submodules

_api.distancesensor – distance sensor functions API

This module contains the API functions for user interaction with a distance sensor brick.

This module is imported by the mindstorms – Mindstorms branding of the user API and spike – Spike Prime branding
of the user API modules so that the API can be branded appropriately in documentation (i.e. so that Mindstorms docs
can tell you to import mindstorms, and Spike Prime docs can tell you to import spike).

1.4. Libraries specific to the Technic Hub 73

MicroPython Lego RI5 Documentation, Release 1.11

DistanceSensor Class

class _api.distancesensor.DistanceSensor(???)
???

Methods
_set_mode(???)

???

_set_range_mode(???)
???

_is_distance_sensor(???)
???

get_distance_cm(???)
???

get_distance_inches(???)
???

get_distance_percentage(???)
???

wait_for_distance_farther_than(???)
???

wait_for_distance_closer_than(???)
???

light_up(???)
???

light_up_all(???)
???

Constants
PERCENT = %

???

CM = cm
???

IN = in
???

_LONG_RANGE_MODE = (0, [(0, 0)])
???

_SHORT_RANGE_MODE = (1, [(1, 0)])
???

_LIGHT_MODE = (5, [(5, 0), (5, 1), (5, 2), (5, 3)])
???

74 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

Imports

• Function _api.util.newSensorDisconnectedError

• Function utime.sleep_ms

• Function util.scratch.clamp

• Function util.sensors.is_type

• Constant util.constants.LPF2_FLIPPER_DISTANCE = 62

• Constant util.constants.PORTS = {‘C’: Port(C), ‘B’: Port(B), ‘D’: Port(D), ‘E’: Port(E), ‘A’: Port(A), ‘F’:
Port(F)}

_api.forcesensor – force sensor functions API

This module contains the API functions for user interaction with a force sensor brick. (Included with Spike Prime but
not in the Robot Inventor kit.)

This module is imported by the mindstorms – Mindstorms branding of the user API and spike – Spike Prime branding
of the user API modules so that the API can be branded appropriately in documentation (i.e. so that Mindstorms docs
can tell you to import mindstorms, and Spike Prime docs can tell you to import spike).

Functions

_api.forcesensor._get_port_device(???)
???

_api.forcesensor._is_force_sensor(???)
???

ForceSensor Class

class _api.forcesensor.ForceSensor(???)
???

Methods
wait_until_released(???)

???

is_pressed(???)
???

wait_until_pressed(???)
???

_is_pressed(???)
???

get_force_percentage(???)
???

get_force_newton(???)
???

1.4. Libraries specific to the Technic Hub 75

MicroPython Lego RI5 Documentation, Release 1.11

Imports

• Function _api.util.newSensorDisconnectedError

• Function utime.sleep_ms

• Function util.sensors.is_type

• Constant util.constants.LPF2_FLIPPER_FORCE = 63

• Constant util.constants.PORTS = {‘C’: Port(C), ‘B’: Port(B), ‘D’: Port(D), ‘E’: Port(E), ‘A’: Port(A), ‘F’:
Port(F)}

_api.colorsensor – color sensor functions API

This module contains the API functions for user interaction with a color sensor brick.

This module is imported by the mindstorms – Mindstorms branding of the user API and spike – Spike Prime branding
of the user API modules so that the API can be branded appropriately in documentation (i.e. so that Mindstorms docs
can tell you to import mindstorms, and Spike Prime docs can tell you to import spike).

Functions

_api.colorsensor._get_port_device(???)
???

_api.colorsensor._is_color_sensor(???)
???

Constants

_api.colorsensor._COLORLIST = ['black', 'violet', None, 'blue', 'cyan', 'green', None,
'yellow', None, 'red', 'white']

A list to allow easy mapping from color values to color names.

_api.colorsensor._AMBIENT_MODE = (2, [(2, 0)])
???

_api.colorsensor._LIGHT_MODE = (3, [(3, 0), (3, 1), (3, 2)])
???

_api.colorsensor._COMBI_MODE = ([(1, 0), (0, 0), (5, 0), (5, 1), (5, 2), (5, 3)],)
???

ColorSensor Class

class _api.colorsensor.ColorSensor(???)
???

Methods
light_up_all(???)

???

light_up(???)
???

76 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

get_reflected_light(???)
???

get_rgb_intensity(???)
???

get_red(???)
???

get_green(???)
???

get_blue(???)
???

get_ambient_light(???)
???

get_color(???)
???

_get_color(???)
???

_set_mode(???)
???

wait_until_color(???)
???

wait_for_new_color(???)
???

Imports

• Function _api.util.newSensorDisconnectedError

• Function utime.sleep_ms

• Function util.scratch.clamp

• Function util.sensors.get_sensor_value

• Function util.sensors.is_type

• Constant util.constants.LPF2_FLIPPER_COLOR = 61

• Constant util.constants.PORTS = {‘C’: Port(C), ‘B’: Port(B), ‘D’: Port(D), ‘E’: Port(E), ‘A’: Port(A), ‘F’:
Port(F)}

_api.motionsensor – motion sensor functions API

This module contains the API functions for user interaction with the motion sensor inside the Hub.

This module is imported by the mindstorms – Mindstorms branding of the user API and spike – Spike Prime branding
of the user API modules so that the API can be branded appropriately in documentation (i.e. so that Mindstorms docs
can tell you to import mindstorms, and Spike Prime docs can tell you to import spike).

1.4. Libraries specific to the Technic Hub 77

MicroPython Lego RI5 Documentation, Release 1.11

MotionSensor Class

class _api.motionsensor.MotionSensor(???)
???

Methods
get_pitch_angle(???)

???

get_roll_angle(???)
???

get_yaw_angle(???)
???

get_orientation(???)
???

get_gesture(???)
???

reset_yaw_angle(???)
???

was_gesture(???)
???

wait_for_new_orientation(???)
???

wait_for_new_gesture(???)
???

Constants
FALLING = falling

???

SHAKEN = shaken
???

TAPPED = tapped
???

DOUBLE_TAPPED = doubletapped
???

LEFT_SIDE = leftside
???

RIGHT_SIDE = rightside
???

FRONT = front
???

BACK = back
???

UP = up
???

78 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

DOWN = down
???

Imports

• Module hub – hub brick functionality

• Function utime.sleep_ms

_api.statuslight – status light functions API

This module contains the API functions for user interaction with the status light around the main button on the Hub.

This module is imported by the mindstorms – Mindstorms branding of the user API and spike – Spike Prime branding
of the user API modules so that the API can be branded appropriately in documentation (i.e. so that Mindstorms docs
can tell you to import mindstorms, and Spike Prime docs can tell you to import spike).

Constants

_api.statuslight._COLORMAP = {'white': 10, 'pink': 1, 'blue': 3, 'yellow': 7,
'orange': 8, 'violet': 2, 'azure': 4, 'red': 9, 'green': 6, 'cyan': 5, 'black': 0}

Dictionary to map from names of colors to their values.

StatusLight Class

class _api.statuslight.StatusLight(???)
???

Methods
on(???)

???

off(???)
???

Imports

• Module hub – hub brick functionality

_api.motor – motor functions API

This module contains the API functions for user interaction with a motor brick.

This module is imported by the mindstorms – Mindstorms branding of the user API and spike – Spike Prime branding
of the user API modules so that the API can be branded appropriately in documentation (i.e. so that Mindstorms docs
can tell you to import mindstorms, and Spike Prime docs can tell you to import spike).

1.4. Libraries specific to the Technic Hub 79

MicroPython Lego RI5 Documentation, Release 1.11

Functions

_api.motor._is_motor(???)
???

Motor Class

class _api.motor.Motor(???)
???

Methods
set_degrees_counted(???)

???

set_default_speed(???)
???

set_stop_action(???)
???

set_stall_detection(???)
???

get_position(???)
???

get_speed(???)
???

get_degrees_counted(???)
???

get_default_speed(???)
???

run_to_degrees_counted(???)
???

run_to_position(???)
???

run_for_degrees(???)
???

run_for_rotations(???)
???

run_for_seconds(???)
???

was_stalled(???)
???

was_interrupted(???)
???

start_at_power(???)
???

start(???)
???

80 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

stop(???)
???

Constants
BRAKE = brake

???

HOLD = hold
???

COAST = coast
???

Imports

• Module hub – hub brick functionality

• Function _api.util.newSensorDisconnectedError

• Function _api.util.wait_for_async

• Function utime.sleep_ms

• Function util.motor.clamp_power

• Function util.motor.clamp_speed

• Function util.sensors.is_type

• Constant system.system = <Main System object>

• Constant `util.constants.MOTOR_TYPES = (65, 48, 49, 75, 76)

• Constant util.constants.PORTS = {‘C’: Port(C), ‘B’: Port(B), ‘D’: Port(D), ‘E’: Port(E), ‘A’: Port(A), ‘F’:
Port(F)}

_api.button – button functions API

This module contains the API functions for user interaction with buttons. In particular the left and right buttons on the
hub.

This module is imported by the mindstorms – Mindstorms branding of the user API and spike – Spike Prime branding
of the user API modules so that the API can be branded appropriately in documentation (i.e. so that Mindstorms docs
can tell you to import mindstorms, and Spike Prime docs can tell you to import spike).

Button Class

class _api.button.Button(???)
???

Methods
was_pressed(???)

???

wait_until_pressed(???)
???

1.4. Libraries specific to the Technic Hub 81

MicroPython Lego RI5 Documentation, Release 1.11

wait_until_released(???)
???

is_pressed(???)
???

_api.motorpair – paired motor functions API

This module contains the API functions for user interaction with pairs of motors. (Motors linked together in code to
make dual-wheel vehicles easy to operate.)

This module is imported by the mindstorms – Mindstorms branding of the user API and spike – Spike Prime branding
of the user API modules so that the API can be branded appropriately in documentation (i.e. so that Mindstorms docs
can tell you to import mindstorms, and Spike Prime docs can tell you to import spike).

Functions

_api.motorpair.clamp_steering(???)
???

_api.motorpair._is_motor(???)
???

Constants

_api.motorpair._DISCONNECTED_ERROR = One or both of the motors has been disconnected.
???

_api.motorpair._MOTOR_PAIRING_ERROR = The motors could not be paired.
???

MotorPair Class

class _api.motorpair.MotorPair(???)
???

Methods
get_default_speed(???)

???

set_default_speed(???)
???

set_stop_action(???)
???

set_motor_rotation(???)
???

start(???)
???

start_at_power(???)
???

82 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

start_tank(???)
???

start_tank_at_power(???)
???

stop(???)
???

move(???)
???

move_tank(???)
???

_move_with_speed(???)
???

was_interrupted(???)
???

Constants
BRAKE = brake

???

HOLD = hold
???

COAST = coast
???

CM = cm
???

IN = in
???

DEGREES = degrees
???

SECONDS = seconds
???

ROTATIONS = rotations
???

Imports

• Function _api.util.wait_for_async

• Function system.movewrapper.from_steering

• Function util.motor.clamp_power

• Function util.motor.clamp_speed

• Constant system.system = <Main System object>

• Constant util.constants.PORTS = {‘C’: Port(C), ‘B’: Port(B), ‘D’: Port(D), ‘E’: Port(E), ‘A’: Port(A), ‘F’:
Port(F)}

1.4. Libraries specific to the Technic Hub 83

MicroPython Lego RI5 Documentation, Release 1.11

_api.lightmatrix – 5x5 display functions API

This module contains the API functions for user interaction with the 5x5 display on the front of the Hub.

This module is imported by the mindstorms – Mindstorms branding of the user API and spike – Spike Prime branding
of the user API modules so that the API can be branded appropriately in documentation (i.e. so that Mindstorms docs
can tell you to import mindstorms, and Spike Prime docs can tell you to import spike).

LightMatrix Class

class _api.lightmatrix.LightMatrix(???)
???

Methods
show_image(???)

???

off(???)
???

set_pixel(???)
???

write(???)
???

Imports

• Module hub – hub brick functionality

_api.util – utility functions for the API code

This module contains functions used by the API functions. (I don’t believe they’re designed to be a part of the API as
they’re not obviously documented anywhere.)

This module is imported by the mindstorms – Mindstorms branding of the user API and spike – Spike Prime branding
of the user API modules so that the API can be branded appropriately in documentation (i.e. so that Mindstorms docs
can tell you to import mindstorms, and Spike Prime docs can tell you to import spike).

Functions

_api.util.wait_for_async(???)
???

_api.util.newSensorDisconnectedError(???)
???

84 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

Imports

• Module utime – time related functions

_api.speaker – speaker functions API

This module contains the API functions for user interaction with the speaker inside the Hub.

This module is imported by the mindstorms – Mindstorms branding of the user API and spike – Spike Prime branding
of the user API modules so that the API can be branded appropriately in documentation (i.e. so that Mindstorms docs
can tell you to import mindstorms, and Spike Prime docs can tell you to import spike).

Speaker Class

class _api.speaker.Speaker(???)
???

Methods
beep(???)

???

start_beep(???)
???

stop(???)
???

get_volume(???)
???

set_volume(???)
???

Imports

• Module hub – hub brick functionality

• Function _api.util.wait_for_async

• Constant system.system = <Main System object>

_api.app – application functions API

This module contains the API functions for user interaction with the controlling application (i.e. computer or phone).

This module is imported by the mindstorms – Mindstorms branding of the user API and spike – Spike Prime branding
of the user API modules so that the API can be branded appropriately in documentation (i.e. so that Mindstorms docs
can tell you to import mindstorms, and Spike Prime docs can tell you to import spike).

1.4. Libraries specific to the Technic Hub 85

MicroPython Lego RI5 Documentation, Release 1.11

Constants

_api.app._NOT_CONNECTED_ERROR = The programming app is not connected to the hub.
Error text for when the app and the hub have become disconnected.

App Class

class _api.app.App(???)
???

Methods
play_sound(???)

???

_play_sound(???)
???

start_sound(???)
???

Imports

• Class protocol.ujsonrpc.JSONRPC

• Function utime.ticks_diff

• Function utime.ticks_ms

• Constant util.constants.BT_VCP = BT_VCP(0)

• Constant util.constants.USB_VCP = USB_VCP(0)

_api.large_technic_hub – central hub API

This module contains the specific instances of other API classes for user interaction with various aspects of the central
hub brick.

The class in this module is superclassed by the mindstorms.MSHub and spike.PrimeHub classes so that the API can
be branded appropriately in documentation (i.e. so that Mindstorms docs can tell you to import mindstorms, and Spike
Prime docs can tell you to import spike).

LargeTechnicHub Class

class _api.large_technic_hub.LargeTechnicHub(???)
???

Properties
property status_light

???

property light_matrix
???

86 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

property left_button
???

property right_button
???

property motion_sensor
???

property speaker
???

Constants
PORT_A = A

PORT_B = B

PORT_C = C

PORT_D = D

PORT_E = E

PORT_F = F
Constants to specify specific ports on the Hub.

_status_light
A reference to the specific _api.statuslight.StatusLight object representing the status light under
the main button on the Hub.

_light_matrix
A reference to the specific _api.lightmatrix.LightMatrix object representing the 5x5 display on the
Hub.

_left_button
A reference to the specific _api.button.Button object representing the left button on the Hub.

_right_button
A reference to the specific _api.button.Button object representing the right button on the Hub.

_motion_sensor
A reference to the specific _api.motionsensor.MotionSensor object representing the motion sensor
in the Hub.

_speaker
A reference to the specific _api.speaker.Speaker object representing the speaker in the Hub.

Imports

• Module hub – hub brick functionality

• Function _api.button.Button

• Function _api.lightmatrix.LightMatrix

• Function _api.motionsensor.MotionSensor

• Function _api.speaker.Speaker

• Function _api.statuslight.StatusLight

1.4. Libraries specific to the Technic Hub 87

MicroPython Lego RI5 Documentation, Release 1.11

1.4.4 commands – commands module

Module containing a lot of high-level concepts, but no obvious theme beyond that. Mostly organised into submodules
*_methods containing *Methods classes, which are all also aliased in the main module for convenience and seem to
implement the commands.abstract_handler.AbstractHandler class.

Submodules

commands.abstract_handler – base class for handler classes

Contains an abstract base class implemented by the various *Methods classes in the commands – commands module
module.

AbstractHandler Class

class commands.abstract_handler.AbstractHandler(???)
???

Methods
abstract get_methods(???)

Implemented by all the classes that implement this class. ???

Constants
_rpc = None

???

commands.linegraphmonitor_methods – ???

???

LinegraphMonitorMethods Class

class commands.linegraphmonitor_methods.LinegraphMonitorMethods(???)
???

Methods
__init__(???)

Closure function. ???

get_methods(???)
???

handle_delete_file(???)
???

handle_get_linegraph_monitor_info(???)
???

_error_if_running(???)
???

handle_get_linegraph_monitor_package(???)
???

88 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

Imports

• Module commands.abstract_handler.AbstractHandler

• Module math – mathematical functions

• Module uos – basic “operating system” services

• Function micropython.const

• Function utime.sleep_ms

• Function utime.ticks_diff

• Function utime.ticks_ms

• Constant util.constants.LINEGRAPH_DIR = /data/linegraph

• Constant util.storage.ENOENT = 2

commands.sound_methods – ???

???

SoundMethods Class

class commands.sound_methods.SoundMethods(???)
???

Methods
__init__(???)

Closure function. ???

get_methods(???)
???

handle_sound_beep_for_time(???)
???

handle_play_sound(???)
???

handle_sound_off(???)
???

handle_sound_beep(???)
???

1.4. Libraries specific to the Technic Hub 89

MicroPython Lego RI5 Documentation, Release 1.11

Imports

• Module commands.abstract_handler.AbstractHandler

• Module hub – hub brick functionality

commands.light_methods – ???

???

LightMethods Class

class commands.light_methods.LightMethods(???)
???

Methods
__init__(???)

Closure function. ???

get_methods(???)
???

handle_display_rotate_direction(???)
???

handle_display_rotate_orientation(???)
???

handle_ultrasonic_light_up(???)
???

handle_display_clear(???)
???

handle_display_animation(???)
???

handle_center_button_lights(???)
???

handle_display_set_pixel(???)
???

handle_display_sync(???)
???

handle_display_image_for(???)
???

show_frames(???)
???

handle_display_image(???)
???

handle_display_text(???)
???

90 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

static _merge_display_params(???)
???

Constants
DEFAULT_DISPLAY_PARAMS = {'fade': 0, 'delay': 500, 'wait': False, 'loop': False,
'clear': False}

Imports

• Module commands.abstract_handler.AbstractHandler

• Module hub – hub brick functionality

• Function util.rotation.rotate_hub_display

• Function util.rotation.rotate_hub_display_to_value

• Function util.scratch.number_color_to_rgb

• Function util.scratch.percent_to_int

• Function util.sensors.set_display_sync

• Constant util.constants.NO_STATUS = -1

• Constant util.constants.PORTS = {‘C’: Port(C), ‘B’: Port(B), ‘D’: Port(D), ‘E’: Port(E), ‘A’: Port(A), ‘F’:
Port(F)}

commands.program_methods – ???

???

Constants

commands.program_methods._PRINT_OVERRIDE = "from util.print_override import
spikeprint;print = spikeprint\n"

Code to override the regular print statement with the special RI5 one.

commands.program_methods._TRANSFER_HANDLE = {}
???

ProgramMethods Class

class commands.program_methods.ProgramMethods(???)
???

Methods
__init__(???)

Closure function. ???

get_methods(???)
???

handle_write_package(???)
???

1.4. Libraries specific to the Technic Hub 91

MicroPython Lego RI5 Documentation, Release 1.11

handle_program_reset_time(???)
???

handle_program_start_time(???)
???

handle_soft_reset(???)
???

_handle_write_print_override(???)
???

handle_program_execute(???)
???

handle_start_write_program(???)
???

handle_remove_project(???)
???

handle_program_terminate(???)
???

handle_program_modechange(???)
???

handle_program_get_time(???)
???

handle_storage_status(???)
???

handle_move_project(???)
???

Imports

• Module commands.abstract_handler.AbstractHandler

• Module protocol.notifications – ???

• Module sys – system specific functions

• Module urandom – random number generation

• Module util.storage – storage utility module

• Module utime – time related functions

• Function micropython.const

• Function ubinascii.a2b_base64

• Function util.time.get_time

• Function util.time.reset_time

• Function util.time.start_time

92 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

commands.motor_methods – ???

???

MotorMethods Class

class commands.motor_methods.MotorMethods(???)
???

Methods
__init__(???)

Closure function. ???

get_methods(???)
???

handle_motor_pwm(???)
???

handle_motor_go_direction_to_position(???)
???

handle_motor_run_timed(???)
???

handle_motor_stop(???)
???

handle_motor_start(???)
???

handle_motor_run_for_degrees(???)
???

handle_motor_set_position(???)
???

handle_motor_go_to_relative_position(???)
???

handle_motor_adjust_offset(???)
???

handle_motor_position(???)
???

Imports

• Module commands.abstract_handler.AbstractHandler

• Module hub – hub brick functionality

• Function event_loop.get_event_loop

• Constant util.constants.NO_STATUS = -1

• Constant util.constants.PORTS = {‘C’: Port(C), ‘B’: Port(B), ‘D’: Port(D), ‘E’: Port(E), ‘A’: Port(A), ‘F’:
Port(F)}

1.4. Libraries specific to the Technic Hub 93

MicroPython Lego RI5 Documentation, Release 1.11

commands.hub_methods – ???

???

HubMethods Class

class commands.hub_methods.HubMethods(???)
???

Methods
__init__(???)

Closure function. ???

get_methods(???)
???

handle_trigger_current_state(???)
???

handle_set_port_mode(???)
???

handle_set_hub_name(???)
???

handle_get_hub_info(???)
???

handle_reset_yaw(???)
???

Imports

• Module commands.abstract_handler.AbstractHandler

• Module hub – hub brick functionality

• Module protocol.notifications – ???

• Module version – version module

• Function ubinascii.a2b_base64

• Function util.storage.write_local_name

• Constant util.storage.ENOENT = 2

commands.wait_methods – ???

???

94 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

WaitMethods Class

class commands.wait_methods.WaitMethods(???)
???

Methods
__init__(???)

Closure function. ???

get_methods(???)
???

handle_when_sensor_changed(???)
???

handle_when_sensor_force_bumped(???)
???

handle_when_sensor_force_released(???)
???

handle_wait_gesture(???)
???

Imports

• Module commands.abstract_handler.AbstractHandler

commands.move_methods – ???

???

MoveMethods Class

class commands.move_methods.MoveMethods(???)
???

Methods
__init__(???)

Closure function. ???

get_methods(???)
???

handle_move_tank_degrees(???)
???

handle_move_tank_time(???)
???

handle_move_start_powers(???)
???

handle_move_stop(???)
???

1.4. Libraries specific to the Technic Hub 95

MicroPython Lego RI5 Documentation, Release 1.11

handle_move_start_speeds(???)
???

Imports

• Module commands.abstract_handler.AbstractHandler

• Constant util.constants.NO_STATUS = -1

1.4.5 event_loop – event_loop module

Home of the Event loop class - this seems to be the main scheduler on the Hub, called by the hub_runtime – Hub main
module module’s start() procedure. The EventLoop class (along with the imports) seem to technically live inside
an event_loop.event_loop submodule, but the class is also available inside event_loop itself, so the submodule isn’t
necessary to know about.

Functions

event_loop.get_event_loop(???)
???

Constants

event_loop._EVENT_LOOP
Reference to the main event loop object (type EventLoop).

Class EventLoop

class event_loop.EventLoop(???)
???

_discard(???)
???

step(???)
Generator function. ???

cancel(???)
???

call_soon(???)
???

run_forever(???)
???

96 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

Imports

• Module ucollections – collection and container types

• Module utimeq – heap queue with times

• Module utime – time related functions

1.4.6 mindstorms – Mindstorms branding of the user API

This module seems to be purely designed as a frontend for the _api – user API module, so that Robot Inventor Mind-
storms documentation can tell its users to import a module with a related name.

See _api – user API for the majority of submodules and classes, all of which can also be called from the mindstorms
module by using it as a synonym for “_api”.

Classes

class mindstorms.MSHub
The actual class appears to have no methods or functions of its own, but it seems to be a superclass of _api.
large_technic_hub.LargeTechnicHub so inherits everything from there.

The API expects most access to the central Technic Hub and its functions to use an instance of this class.

1.4.7 programrunner – run user programs

This module handles the running of user programs (i.e. the Scratch/Python programs that live in the program slots on
the system).

Functions

programrunner.filter_dict_len(???)
???

programrunner.map_dirty(???)
???

programrunner.filter_vm_vars(???)
???

programrunner.sum_list_len(???)
???

programrunner.filter_vm_lists(???)
???

programrunner.setup_vm(???)
Generator function. ???

programrunner.untuple_vm_vars(???)
Generator function. ???

1.4. Libraries specific to the Technic Hub 97

MicroPython Lego RI5 Documentation, Release 1.11

Constants

programrunner._EMPTY_DICT = {}
???

Class ProgramRunner

class programrunner.ProgramRunner(???)
???

Methods
vm_has_extension(???)

???

start_program(???)
???

is_running(???)
???

start_notify_loop(???)
Generator function. ???

notify_all_state(???)
???

stop_all(???)
???

Constants
IDLE = 0

???

RUNNING_NONBLOCKING = 1
???

RUNNING_BLOCKING = 2
???

Imports

• Module util.sensors – sensors utility module

• Module sys – system specific functions

• Module hub – hub brick functionality

• Module gc – control the garbage collector

• Module protocol.notifications – ???

• Class runtime.virtualmachine.VirtualMachine

• Function micropython.const

• Function event_loop.get_event_loop

• Function util.resetter.wait_until_ready_after_restart

• Function util.rotation.rotate_hub_display_to_orientation

98 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

• Function util.storage.get_path

• Function util.storage.set_force_reset

• Function util.storage.get_program_project_id

• Function util.storage.get_program_type

• Function util.time.reset_time

• Function util.time.stop_time

• Constant util.constants.LPF2_FLIPPER_DISTANCE = 62

• Constant util.constants.TIMER_PACE_LOW = 48

• Constant util.constants.TIMER_PACE_HIGH = 16

• Constant util.storage.PROGRAM_TYPE_PYTHON = python

• Constant util.storage.PROGRAM_TYPE_SCRATCH = scratch

• Constant util.error_handler.PROGRAM_EXECUTION_ERROR = 0

• Constant util.error_handler.PROGRAM_EXECUTION_MEMORY_ERROR = 1

• Constant util.error_handler.error_handler = <Main ErrorHandler object>

1.4.8 protocol – RI5 communication protocol

This module handles the communication protocol that the RI5 uses when talking over USB/Bluetooth to a con-
troller app. The protocol uses a specific json format. The base module has three submodules, and aliases proto-
col.rpc_protocol.RPCProtocol as protocol.RPCProtocol for convenience.

Submodules

protocol.notifications – ???

???

Functions

protocol.notifications.notify_error_event(???)
???

protocol.notifications.notify_sensor_data(???)
???

protocol.notifications.notify_storage_status(???)
???

protocol.notifications.notify_stack_start(???)
???

protocol.notifications.notify_battery_status(???)
???

protocol.notifications.notify_program_running(???)
???

1.4. Libraries specific to the Technic Hub 99

MicroPython Lego RI5 Documentation, Release 1.11

protocol.notifications.notify_gesture_event(???)
???

protocol.notifications.notify_info_status(???)
???

protocol.notifications.notify_vm_state(???)
???

protocol.notifications.notify_stack_stop(???)
???

protocol.notifications.notify_linegraph_timer_reset(???)
???

protocol.notifications.notify_debug_event(???)
???

protocol.notifications.notify_button_event(???)
???

protocol.notifications.notify_gesture_status(???)
???

Constants

protocol.notifications._RQ_LEN = run_queue_len
???

protocol.notifications._MEM = mem_alloc
???

protocol.notifications._D = mem_delta
???

protocol.notifications._DEBUG_PAYLOAD = {'wait_queue_len': 0, 'mem_delta': 0,
'run_queue_len': 0, 'mem_alloc': 0}

???

protocol.notifications._WQ_LEN = wait_queue_len
???

Imports

• Module hub – hub brick functionality

• Function gc.mem_alloc

• Function micropython.const

• Function ubinascii.b2a_base64

• Function util.storage.get_storage_information

• Function util.storage.read_local_name

• Variable util.sensors.battery_status

• Variable util.sensors.sensor_data

100 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

protocol.rpc_protocol – ???

Aside from importing various functions from elsewhere, this module just contains the RPCProtocol class.

RPCProtocol Class

class protocol.rpc_protocol.RPCProtocol(???)
???

register_method_handlers(???)
???

_register_method_handler(???)
???

looper(???)
Generator method. ???

property stream
???

Imports

• Function event_loop.get_event_loop

• Function micropython.const

• Function protocol.notifications.notify_battery_status

• Function protocol.notifications.notify_debug_event

• Function protocol.notifications.notify_sensor_data

• Function util.sensors.update_battery_status

• Function util.sensors.update_sensor_data

• Class protocol.ujsonrpc.JSONRPC

protocol.ujsonrpc – ???

???

Constants

protocol.ujsonrpc._ID_PREFIX = b'{"i":'
???

protocol.ujsonrpc._PARAMS = b',"p":'
???

protocol.ujsonrpc._ID = b',"i":'
???

protocol.ujsonrpc._ERROR = b',"e":'
???

1.4. Libraries specific to the Technic Hub 101

MicroPython Lego RI5 Documentation, Release 1.11

protocol.ujsonrpc._SUFFIX = b'}\r'
???

protocol.ujsonrpc._SUSPENDED_MSG_PATH_ = ./suspended_msg
???

protocol.ujsonrpc._CARRIAGE_RETURN = b'\r'
???

protocol.ujsonrpc.NO_RESPONSE = {}
???

protocol.ujsonrpc._METHOD_PREFIX = b'{"m":'
???

protocol.ujsonrpc._RESPONSE = b',"r":'
???

JSONRPC Class

class protocol.ujsonrpc.JSONRPC(???)
???

Methods

_pop_suspend_message(???)
???

clear_methods(???)
???

emit_large(???)
???

reply(???)
???

_handle_message(???)
???

suspend_current_message(???)
???

error(???)
???

add_method(???)
???

parse_chunk(???)
???

cancel_call(???)
???

parse_buffer(???)
???

emit(???)
???

102 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

call(???)
???

resume_suspended_msg(???)
???

property stream
???

Fields .. data:: pending

??? Default value = {}

Method Dictionary

methods = {'scratch.display_animation': <bound_method>, 'scratch.motor_pwm':
<bound_method>, 'set_hub_name': <bound_method>, 'scratch.play_sound':
<bound_method>, 'get_linegraph_monitor_info': <bound_method>, 'reset_program_time':
<bound_method>, 'set_port_mode': <bound_method>,
'scratch.motor_go_direction_to_position': <bound_method>, 'sync_display':
<bound_method>, 'scratch.reset_yaw': <bound_method>, 'scratch.when_sensor_changed':
<bound_method>, 'scratch.motor_run_timed': <bound_method>, 'scratch.move_stop':
<bound_method>, 'program_execute': <bound_method>,
'scratch.when_sensor_force_released': <bound_method>, 'remove_project':
<bound_method>, 'start_write_program': <bound_method>, 'get_storage_status':
<bound_method>, 'scratch.sound_beep': <bound_method>, 'scratch.sound_off':
<bound_method>, 'scratch.display_set_pixel': <bound_method>,
'scratch.ultrasonic_light_up': <bound_method>, 'scratch.motor_start':
<bound_method>, 'delete_linegraph_file': <bound_method>, 'program_terminate':
<bound_method>, 'scratch.display_rotate_direction': <bound_method>,
'scratch.display_image': <bound_method>, 'scratch.move_start_powers':
<bound_method>, 'scratch.sound_beep_for_time': <bound_method>, 'get_program_time':
<bound_method>, 'move_project': <bound_method>, 'get_hub_info': <bound_method>,
'scratch.center_button_lights': <bound_method>, 'scratch.motor_position':
<bound_method>, 'scratch.move_start_speeds': <bound_method>, 'program_modechange':
<bound_method>, 'scratch.move_tank_degrees': <bound_method>,
'scratch.motor_go_to_relative_position': <bound_method>, 'write_package':
<bound_method>, 'scratch.display_rotate_orientation': <bound_method>,
'scratch.display_image_for': <bound_method>, 'scratch.when_sensor_force_bumped':
<bound_method>, 'scratch.move_tank_time': <bound_method>, 'scratch.wait_gesture':
<bound_method>, 'scratch.motor_run_for_degrees': <bound_method>,
'trigger_current_state': <bound_method>, 'scratch.display_clear': <bound_method>,
'scratch.motor_stop': <bound_method>, 'scratch.motor_adjust_offset':
<bound_method>, 'start_program_time': <bound_method>, 'scratch.motor_set_position':
<bound_method>, 'scratch.display_text': <bound_method>,
'get_linegraph_monitor_package': <bound_method>}

Seems to be a lookup table binding scratch API commands to specific methods?

1.4. Libraries specific to the Technic Hub 103

MicroPython Lego RI5 Documentation, Release 1.11

Imports

• Module ujson – JSON encoding and decoding

• Module uos – basic “operating system” services

• Module urandom – random number generation

• Function ubinascii.b2a_base64

• Function utime.sleep_ms

• Constant uerrno.ENOENT = 2

• Class uio.StringIO

1.4.9 runtime – runtime module

Contains mainly stack and virtual machine details needed to run programs on the hub.

Classes runtime.stack.Stack , runtime.virtualmachine.VirtualMachine and runtime.multimotor.
MultiMotor have shortcut aliases in the main namespace.

Submodules

runtime.dirty_dict – ???

Contains the DirtyDict class. ???

DirtyDict Class

class runtime.dirty_dict.DirtyDict(???)
???

__delitem__(???)
Closure function. ???

_mark_dirty(???)
???

dict_get(???)
???

list_insert(???)
???

__init__(???)
Closure function. ???

list_del(???)
???

list_clear(???)
???

setitem(???)
Closure function. ???

104 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

dict_set(???)
???

list_append(???)
???

list_set(???)
???

dirty_items(???)
Generator function. ???

clear(???)
Closure function. ???

runtime.multimotor – ???

Contains the MultiMotor class. ???

MultiMotor Class

class runtime.multimotor.MultiMotor(???)
???

await_all(???)
Generator function. ???

run(???)
???

runtime.stack – ???

Contains the Stack class. ???

Stack Class

class runtime.stack.Stack(???)
???

Methods .. method:: is_active(???)

???

should_start(???)
???

_check_condition(???)
Generator function. ???

stop(???)
???

restart(???)
???

start(???)
???

1.4. Libraries specific to the Technic Hub 105

MicroPython Lego RI5 Documentation, Release 1.11

Constants .. data:: STATUS_RUNNING

value 10

???

STATUS_IDLE = 20
???

STATUS_WAITING = 30
???

ON_START = 0
???

ON_BROADCAST = 1
???

ON_BUTTON = 2
???

ON_GESTURE = 3
???

ON_CONDITION = 4
???

Imports

• Function micropython.const

• Function protocol.notifications.notify_stack_start

• Function protocol.notifications.notify_stack_stop

runtime.timer – ???

???

Functions

runtime.timer.reset(???)
???

runtime.timer.get(???)
???

106 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

Constants

runtime.timer.START_TIME = 0
???

Imports

• Module utime – time related functions

runtime.virtualmachine – ???

Contains the VirtualMachine class. ???

VirtualMachine Class

class runtime.virtualmachine.VirtualMachine(???)
???

Methods
register_on_condition(???)

???

register_on_start(???)
???

register_callback(???)
???

register_on_gesture(???)
???

register_on_button(???)
???

register_on_broadcast(???)
???

reset_time(???)
???

shutdown(???)
???

reset_timer(???)
???

stop_stacks(???)
???

schedule_coroutine(???)
???

broadcast(???)
???

check_all_conditions(???)
Generator function. ???

1.4. Libraries specific to the Technic Hub 107

MicroPython Lego RI5 Documentation, Release 1.11

get_time(???)
???

start(???)
???

Imports

• Module hub – hub brick functionality

• Module runtime.timer – ???

• Class protocol.ujsonrpc.JSONRPC

• Class runtime.dirty_dict.DirtyDict

• Class runtime.stack.Stack

• Class runtime.vm_store.VMStore

• Class system.System

• Function util.time.get_time

• Function util.time.reset_time

• Constant util.constants.PORTS = {‘C’: Port(C), ‘B’: Port(B), ‘D’: Port(D), ‘E’: Port(E), ‘A’: Port(A), ‘F’:
Port(F)}

runtime.vm_store – ???

???

Functions

runtime.vm_store.add_prop(???)
???

runtime.vm_store.add_port_prop(???)
???

Constants

runtime.vm_store._STOP = 1
???

runtime.vm_store._STALL = True
???

runtime.vm_store._PCALIB = 17.5
???

runtime.vm_store._LOC = Billund
???

runtime.vm_store._PAIR = ('A', 'B')
???

108 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

runtime.vm_store._STAT = 0
???

runtime.vm_store._ACCEL = (None, None)
???

VMStore Class

class runtime.vm_store.VMStore(???)
???

Methods
move_speed(???)

Closure function. ???

move_last_status(???)
Closure function. ???

move_stop(???)
Closure function. ???

move_calibration(???)
Closure function. ???

move_acceleration(???)
Closure function. ???

move_pair(???)
Closure function. ???

motor_acceleration(???)
Closure function. ???

motor_stall(???)
Closure function. ???

motor_last_status(???)
Closure function. ???

motor_speed(???)
Closure function. ???

motor_stop(???)
Closure function. ???

music_tempo(???)
Closure function. ???

music_instrument(???)
Closure function. ???

sound_pitch(???)
Closure function. ???

sound_volume(???)
Closure function. ???

sound_pan(???)
Closure function. ???

1.4. Libraries specific to the Technic Hub 109

MicroPython Lego RI5 Documentation, Release 1.11

weather_location(???)
Closure function. ???

weather_offset(???)
Closure function. ???

display_brightness(???)
Closure function. ???

Imports

• Class runtime.dirty_dict.DirtyDict

• Function `micropython.const

• Constant util.constants.BRAKE = 1

• Constant util.constants.SUCCESS = 0

1.4.10 spike – Spike Prime branding of the user API

This module seems to be purely designed as a frontend for the _api – user API module, so that Spike Prime documen-
tation can tell its users to import a module with a related name.

See _api – user API for the majority of submodules and classes, all of which can also be called from the spike module
by using it as a synonym for “_api”.

Classes

class spike.PrimeHub
The actual class appears to have no methods or functions of its own, but it seems to be a superclass of _api.
large_technic_hub.LargeTechnicHub so inherits everything from there.

The API expects most access to the central Technic Hub and its functions to use an instance of this class.

1.4.11 system – system module

Module containing a lot of high-level concepts, but no obvious theme beyond that.

Classes system.callbacks.Callbacks, system.display.DisplayWrapper, system.move.Movement,
system.motors.Motors, system.sound.SoundWrapper have aliases in the main namespace for convenience.

Constants

system.system
Reference to the main System object.

110 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

System Class

class system.System(???)
???

reset(???)
???

Submodules

system.callbacks – ???

???

The main namespace contains an alias for system.callbacks.customcallbacks.
CustomSensorCallbackManager for convenience.

Submodules

system.callbacks.customcallbacks – ???

???

Classes

class system.callbacks.customcallbacks.CustomSensorCallbackManager(???)
???

Methods
static is_less_than(???)

???

static did_bump(???)
???

static did_change(???)
???

until(???)
Generator function. ???

until_less_than(???)
Generator function. ???

until_force_bumped(???)
Generator function. ???

until_changed(???)
Generator function. ???

wait_until_less_than(???)
???

wait_until_force_bumped(???)
???

1.4. Libraries specific to the Technic Hub 111

MicroPython Lego RI5 Documentation, Release 1.11

wait_until_changed(???)
???

_start_test_task(???)
???

remove_task(???)
???

clear_tasks(???)
???

Variables
_active_tasks

??? Observed value: []

Imports

• Module utime – time related functions

• Function event_loop.get_event_loop

• Function micropython.const

• Function util.sensors.get_sensor_value

• Constant util.constants.LPF2_FLIPPER_FORCE = 63

Classes

class system.callbacks.Callbacks(???)
???

reset(???)
???

hard_reset(???)
???

class system.callbacks.ButtonCallbacks(???)
???

reset(???)
???

hard_reset(???)
???

register_rpc_handlers(???)
???

__getitem__(???)
???

class system.callbacks.PortCallbacks(???)
???

reset(???)
???

112 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

hard_reset(???)
???

init_attach(???)
???

__getitem__(???)
???

class system.callbacks.CallbackHandler(???)
???

reset(???)
???

hard_reset(???)
???

callback(???)
???

register(???)
???

register_single(???)
???

register_persistent(???)
???

class system.callbacks.ConnectionCallbacks(???)
???

__uch(???)
???

check_state(???)
???

Imports

• Module hub – hub brick functionality

• Function protocol.notifications.notify_button_event

• Function util.schedule.mp_schedule

• Constant util.constants.BT_VCP = BT_VCP(0) <Bluetooth connection object>

• Constant util.constants.USB_VCP = USB_VCP(0) <USB connection object>

• Constant util.error_handler.error_handler = <Main ErrorHandler object>

1.4. Libraries specific to the Technic Hub 113

MicroPython Lego RI5 Documentation, Release 1.11

system.motors – ???

???

Constants

system.motors._PORT_TO_IDX = ['A', 'B', 'C', 'D', 'E', 'F']
A list to help mapping hub port names to index values.

Motors Class

class system.motors.Motors(???)
???

Methods
register_port_callback_handlers(???)

???

on_port(???)
???

is_motor(???)
???

_update(???)
???

Variables
wrappers

??? Observed value: {}

Imports

• Module hub – hub brick functionality

• Class system.motorwrapper.MotorWrapper

• Constant util.constants.PORTS = {‘C’: Port(C), ‘B’: Port(B), ‘D’: Port(D), ‘E’: Port(E), ‘A’: Port(A), ‘F’:
Port(F)}

system.motorwrapper – ???

???

114 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

Functions

system.motorwrapper._shortest(???)
???

system.motorwrapper._calc_degrees(???)
???

system.motorwrapper._clockwise(???)
???

system.motorwrapper._counterclockwise(???)
???

MotorWrapper Class

class system.motorwrapper.MotorWrapper(???)
???

Methods
__init__(???)

Closure function. ???

run_at_speed(???)
???

run_at_speed_async(???)
Generator function. ???

run_for_degrees(???)
???

run_for_degrees_async(???)
Generator function. ???

run_to_position(???)
???

run_to_position_async(???)
Generator function. ???

run_to_relative_position(???)
???

run_to_relative_position_async(???)
Generator function. ???

run_for_time(???)
???

run_for_time_async(???)
Generator function. ???

pwm(???)
???

stop(???)
???

brake(???)
???

1.4. Libraries specific to the Technic Hub 115

MicroPython Lego RI5 Documentation, Release 1.11

hold(???)
???

get(???)
???

preset(???)
???

float(???)
???

Variables
motor

??? Observed value: None

Imports

• Class system.abstractwrapper.AbstractWrapper

• Function micropython.const

• Constant util.constants.SUCCESS = 0

• Constant util.constants.FLOAT = 0

• Constant util.constants.BRAKE = 1

• Constant util.constants.HOLD = 2

system.sound – ???

???

SoundWrapper Class

class system.sound.SoundWrapper(???)
???

Methods
__init__(???)

Closure function. ???

beep(???)
???

beep_async(???)
Generator function. ???

play(???)
???

play_async(???)
Generator function. ???

116 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

Imports

• Module hub – hub brick functionality

• Class system.abstractwrapper.AbstractWrapper

• Function util.scratch.note_to_frequency

system.move – ???

???

Movement Class

class system.move.Movement(???)
???

Methods
on_pair(???)

???

Variables
_pairs

??? Observed value: {}

Imports

• Class system.movewrapper.MoveWrapper

• Constant util.constants.PORTS = {‘C’: Port(C), ‘B’: Port(B), ‘D’: Port(D), ‘E’: Port(E), ‘A’: Port(A), ‘F’:
Port(F)}

system.movewrapper – ???

???

Functions

system.movewrapper.from_steering(???)
???

1.4. Libraries specific to the Technic Hub 117

MicroPython Lego RI5 Documentation, Release 1.11

MoveWrapper Class

class system.movewrapper.MoveWrapper(???)
???

Methods
__init__(???)

Closure function. ???

move_for_time(???)
???

move_for_time_async(???)
Generator function. ???

move_differential_speed(???)
???

move_differential_speed_async(???)
Generator function. ???

move_at_power(???)
???

start_at_speeds(???)
???

start_at_powers(???)
???

stop(???)
???

brake(???)
???

float(???)
???

hold(???)
???

_direction_to_steering(???)
???

from_direction(???)
???

from_steering(???)
???

is_valid(???)
???

unpair(???)
???

Variables
pair

??? Observed value: None

118 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

Imports

• Class system.abstractwrapper.AbstractWrapper

• Constant util.constants.SUCCESS = 0

• Constant util.constants.FLOAT = 0

• Constant util.constants.BRAKE = 1

• Constant util.constants.HOLD = 2

system.abstractwrapper – ???

???

AbstractWrapper Class

class system.abstractwrapper.AbstractWrapper(???)
???

Methods
await_callback(???)

Generator function. ???

_callback(???)
???

_register(???)
???

cancel(???)
???

Imports

• Function event_loop.get_event_loop

• Function micropython.const

• Constant util.constants.SUCCESS = 0

• Constant util.constants.INTERRUPTED = 1

system.display – ???

???

1.4. Libraries specific to the Technic Hub 119

MicroPython Lego RI5 Documentation, Release 1.11

Functions

system.display.sanitize(???)
???

DisplayWrapper Class

class system.display.DisplayWrapper(???)
???

Methods
__init__(???)

Closure function. ???

show(???)
???

show_async(???)
Generator function. ???

write(???)
???

write_async(???)
Generator function. ???

clear(???)
???

pixel(???)
???

Imports

• Module hub – hub brick functionality

• Class system.abstractwrapper.AbstractWrapper

• Constant util.constants.SUCCESS = 0

Imports

• Module hub – hub brick functionality

• Function event_loop.get_event_loop

120 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

1.4.12 ui.hubui – menu system

Runs the menu system that you see when you boot up the Hub (and between running programs). The entire functionality
is contained in submodule ui.hubui, although the main module also aliases the ui.hubui.HubUI class as ui.HubUI.

Functions

ui.hubui.reset(???)
???

ui.hubui.user_interaction(???)
???

Variables

ui.hubui._latest_activity
???

Constants

ui.hubui.INACTIVE_SHUTDOWN_BT_MS = 1200000
???

ui.hubui.INACTIVE_SHUTDOWN_MS = 300000
???

ui.hubui.DEFAULT_IMAGE = (Image('09090:99999:99999:09990:00900:'),
Image('09000:09900:09990:09900:09000:'))

???

ui.hubui.SLOTS_IMAGE = (Image('09990:09090:09090:09090:09990:'),
Image('00900:09900:00900:00900:09990:'), Image('09990:00090:09990:09000:09990:'),
Image('09990:00090:09990:00090:09990:'), Image('09090:09090:09990:00090:00090:'),
Image('09990:09000:09990:00090:09990:'), Image('09990:09000:09990:09090:09990:'),
Image('09990:00090:00900:09000:09000:'), Image('09990:09090:09990:09090:09990:'),
Image('09990:09090:09990:00090:09990:'), Image('90999:90909:90909:90909:90999:'),
Image('09009:99099:09009:09009:09009:'), Image('90999:90009:90999:90900:90999:'),
Image('90999:90009:90999:90009:90999:'), Image('90909:90909:90999:90009:90009:'),
Image('90999:90900:90999:90009:90999:'), Image('90999:90900:90999:90909:90999:'),
Image('90999:90009:90090:90900:90900:'), Image('90999:90909:90999:90909:90999:'),
Image('90999:90909:90999:90009:90999:'))

???

Class HubUI

class ui.hubui.HubUI(???)
???

Methods
__bt_disconnect(???)

???

__toggle_program(???)
???

1.4. Libraries specific to the Technic Hub 121

MicroPython Lego RI5 Documentation, Release 1.11

__change_slot(???)
Closure function. ???

_program_start(???)
Generator function. ???

stop_all(???)
Closure function. ???

change_execution_mode(???)
Closure function. ???

start_program(???)
Closure function. ???

__cancel_animations(???)
???

__start_autoshutdown(???)
???

__on_center_button(???)
Closure function. ???

_program_stop(???)
Generator function. ???

__get_slot_image(???)
???

__on_connect_button(???)
Closure function. ???

__bt_connect(???)
???

will_stop_restart(???)
???

__shutdown_timer(???)
???

on_connection(???)
Closure function. ???

Properties

property idle
???

Imports

• Module hub – hub brick functionality

• Module utime – time related functions

• Class ProgramRunner

• Class Sounds

• Class system.System

• Function event_loop.get_event_loop

122 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

• Function micropython.const

• Function util.animations.bootup_animation

• Generator function util.animations.bt_animation

• Function util.animations.download_animation

• Generator function util.animations.led_fade_to

• Function util.animations.shutdown_animation

• Function util.animations.streaming_animation

• Generator function util.animations.shift_in_from_bottom

• Generator function util.animations.shift_out_to_bottom

• Function util.storage.get_used_slots

• Constant util.color.DIM_WHITE = (135, 25, 10)

• Constant util.color.WHITE = (255, 70, 35)

1.4.13 util – misc utility module

Contains various miscellaneous utility sub-modules.

Submodules

util.resetter – resetting utility module

???

Functions

util.resetter.wait_until_ready_after_restart(???)
???

Variables

util.resetter._STARTED_AT
??? Observed value: 3380

RTTimer Class

class util.resetter.RTTimer(???)
???

__repl_reset(???)
???

repl_reset(???)
???

1.4. Libraries specific to the Technic Hub 123

MicroPython Lego RI5 Documentation, Release 1.11

start(???)
???

Imports

• Module hub – hub brick functionality

• Function micropython.schedule

• Function utime.sleep_ms

• Function utime.ticks_diff

• Function utime.ticks_ms

util.color – color utility module

???

Functions

util.color.color_percentage(???)
???

util.color.get_color_percentage(???)
???

util.color.rgb_percentage(???)
???

util.color.get_rgb_percentage(???)
???

Constants

util.color.BLACK = (0, 0, 0)

util.color.BLUE = (0, 0, 80)

util.color.AZURE = (0, 57, 57)

util.color.GREEN = (0, 195, 0)

util.color.DIM_WHITE = (135, 25, 10)

util.color.RED = (255, 0, 0)

util.color.VIOLET = (255, 8, 23)

util.color.YELLOW = (255, 35, 0)

util.color.WHITE = (255, 70, 35)
Convenience constants for various colors in (R,G,B)-tuple format.

124 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

util.animations – animation utility module

???

Functions

util.animations.shift_left(???)
???

util.animations.shift_right(???)
???

util.animations.shift_out_to_top(???)
Generator function. ???

util.animations.shift_in_from_right(???)
Generator function. ???

util.animations.shift_in_from_bottom_left(???)
Generator function. ???

util.animations.shift_out_to_bottom(???)
Generator function. ???

util.animations.shift_out_to_left(???)
Generator function. ???

util.animations.shift_in_from_left(???)
Generator function. ???

util.animations.shift_in_from_bottom(???)
Generator function. ???

util.animations.shift_out_to_right(???)
Generator function. ???

util.animations.shift_in_from_top_right(???)
Generator function. ???

util.animations.shift_in_from_top(???)
Generator function. ???

util.animations.streaming_animation(???)
???

util.animations.download_animation(???)
???

util.animations.bootup_animation(???)
???

util.animations.shutdown_animation(???)
???

util.animations.bt_animation(???)
Generator function. ???

util.animations.led_fade_to(???)
Generator function. ???

util.animations.led_fade_in_out(???)
Generator function. ???

1.4. Libraries specific to the Technic Hub 125

MicroPython Lego RI5 Documentation, Release 1.11

util.animations.chain_animations(???)
Generator function. ???

Constants

util.animations.DISPLAY_WIDTH = 5

util.animations.DISPLAY_HEIGHT = 5
Constants for the display dimensions.

util.animations.BOOTUP_FRAMES = (Image('00000:00000:09000:00000:00000:'),
Image('00000:00000:07000:00000:00000:'), Image('00000:00000:07000:00009:00000:'),
Image('00000:00000:07000:00007:00000:'), Image('00000:00000:07000:90007:00000:'),
Image('00000:00000:07000:70007:00000:'), Image('00000:90000:07000:70007:00000:'),
Image('00000:70000:07000:70007:00000:'), Image('00000:70000:07000:70007:00900:'),
Image('00000:70000:07000:70007:00700:'), Image('00000:70900:07000:70007:00700:'),
Image('00090:70800:07000:70007:00700:'), Image('00080:70800:07000:79007:00700:'),
Image('00080:70700:07090:78007:00700:'), Image('00070:70700:07080:78007:90700:'),
Image('09070:70700:07070:77007:80700:'), Image('08070:70700:07070:77007:80709:'),
Image('08079:70700:07070:77007:70708:'), Image('07078:70700:07070:77907:70708:'),
Image('07078:79700:07070:77707:70707:'), Image('07077:78700:07079:77707:70707:'),
Image('07077:78700:07078:77707:79707:'), Image('07977:78700:07078:77707:78707:'),
Image('07877:77700:07078:77797:78707:'), Image('07877:77709:07077:77787:78707:'),
Image('07877:77708:97077:77787:77707:'), Image('07777:77708:87077:77787:77797:'),
Image('07777:77798:87077:77777:77787:'), Image('97777:77787:87077:77777:77787:'),
Image('87777:77787:87977:77777:77787:'), Image('99999:99999:99999:99999:99999:'),
Image('77777:77777:77777:77777:77777:'), Image('66669:66669:66669:66669:66669:'),
Image('55599:55595:55595:55595:55599:'), Image('44999:44949:44949:44949:44999:'),
Image('39993:39393:39393:39393:39993:'), Image('09990:09090:09090:09090:09990:'))

The set of image objects that are displayed on the bootup animation.

util.animations.SHUTDOWN_FRAMES = (Image('99999:90009:90009:90009:99999:'),
Image('55555:57775:57075:57775:55555:'), Image('00000:09990:09090:09990:00000:'),
Image('00000:05550:05750:05550:00000:'), Image('00000:00000:00900:00000:00000:'),
Image('00000:00000:00500:00000:00000:'), Image('00000:00000:00000:00000:00000:'))

The set of image objects that are displayed on the shutdown animation.

Imports

• Module hub – hub brick functionality

• Module utime – time related functions

• Class util.constants.Image

• Function util.color.color_percentage

• Function util.color.get_color_percentage

• Constant util.color.BLACK = (0, 0, 0)

• Constant util.color.DIM_WHITE = (135, 25, 10)

126 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

util.motor – motor utility module

???

Functions

util.motor.clamp_speed(???)
???

util.motor.clamp_power(???)
???

util.motor.dir_to_speed(???)
???

util.scratch – scratch utility module

???

Functions

util.scratch.to_number(???)
???

util.scratch.to_boolean(???)
???

util.scratch.orientation_to_number(???)
???

util.scratch.number_to_orientation(???)
???

util.scratch.percent_to_int(???)
???

util.scratch.percent_to_frequency(???)
???

util.scratch.color_to_number(???)
???

util.scratch.number_to_color(???)
???

number_color_to_rgb – <function number_color_to_rgb at 0x200213e0>

util.scratch.note_to_frequency(???)
???

util.scratch.pitch_to_freq(???)
???

util.scratch.sanitize_ports(???)
???

util.scratch.sanitize_movement_ports(???)
???

1.4. Libraries specific to the Technic Hub 127

MicroPython Lego RI5 Documentation, Release 1.11

util.scratch.clamp(???)
???

util.scratch.wrap_clamp(???)
???

util.scratch.partition_image_str(???)
???

util.scratch.convert_image(???)
???

util.scratch.convert_animation_frame(???)
???

util.scratch.convert_brightness(???)
???

util.scratch.adjust_brightness(???)
???

util.scratch.compare(???)
???

util.scratch.tan(???)
???

util.scratch.is_int(???)
???

util.scratch.get_variable(???)
???

Constants

util.scratch.PAIR_REGEX = <regex object>
???

util.scratch.ORIENTATIONS = ('', 'front', 'back', 'up', 'down', 'rightside', 'leftside')
???

Imports

• Module math – mathematical functions

• Module ure – simple regular expressions

• Module util.color – color utility module

• Constant util.constants.NO_KEY = -1

• Constant util.constants.NUMBER = 0

• Constant util.constants.BOOLEAN = 2

• Constant util.constants.VAR_DEFAULTS = {0: 0, 1: ‘’, 2: False}

128 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

util.storage – storage utility module

???

Functions

util.storage.get_path(???)
???

util.storage.get_storage_information(???)
???

util.storage.generate_project_id(???)
???

util.storage.read_local_name(???)
???

util.storage.write_local_name(???)
???

util.storage._ensure_folder_exists(???)
???

util.storage._get_metadata(???)
???

util.storage._set_metadata(???)
???

util.storage.get_used_slots(???)
???

util.storage.clear_slot(???)
???

util.storage.move_slot(???)
???

util.storage._move_slot_lookup(???)
???

util.storage._file_to_slotid(???)
???

util.storage.get_program_type(???)
???

util.storage.get_program_project_id(???)
???

util.storage.open_program(???)
???

util.storage.read_program(???)
???

util.storage.close_program(???)
???

util.storage.set_force_reset(???)
???

1.4. Libraries specific to the Technic Hub 129

MicroPython Lego RI5 Documentation, Release 1.11

util.storage.pop_force_reset(???)
???

Constants

util.storage._BT_PREFIX = LEGO Hub@
???

util.storage.__FORCE_RESET_PATH__ = ./reset
???

util.storage.__STORAGE_PATH__ = ./projects
???

util.storage.__META_PATH__ = ./projects/.slots
???

util.storage.__PROGRAM_PATH__ = ./projects/{0}
???

util.storage.__PROGRAM_PATH_EXT__ = ./projects/{0}.py
???

util.storage.PROGRAM_TYPE_PYTHON = python
???

util.storage.PROGRAM_TYPE_SCRATCH = scratch
???

Imports

• Module uos – basic “operating system” services

• Module urandom – random number generation

• Module ure – simple regular expressions

• Constant uerrno.ENOENT = 2

• Constant uerrno.EEXIST = 17

• Constant util.constants.LOCAL_NAME = /local_name.txt

util.sensors – sensors utility module

???

130 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

Functions

util.sensors.register_ports(???)
???

util.sensors.is_type(???)
???

util.sensors._is_motor(???)
???

util.sensors._type_change_handler(???)
???

util.sensors.get_sensor_value(???)
???

util.sensors.update_sensor_data(???)
???

util.sensors.update_battery_status(???)
???

util.sensors.reset_to_default_mode(???)
???

util.sensors.set_display_sync(???)
???

util.sensors.current_motion(???)
???

Variables

util.sensors.battery_status
??? Observed value: [8.36, 100, True]

util.sensors.sensor_data
??? Observed value: [[0, ()], [0, ()], [0, ()], [0, ()], [0, ()], [0, ()], (0, -805, 585), (3, 3, 0), (-3, 0, 54), ‘’, 0]

Constants

util.sensors._PORTS = [Port(A), Port(B), Port(C), Port(D), Port(E), Port(F)]
List of the six port objects of the six ports on the Hub. See hub.Port.

util.sensors._REVERSE_MODES = {48: [3, 0, 1, 2], 65: [3, 0, 1, 2], 49: [3, 0, 1, 2],
75: [3, 0, 1, 2], 76: [3, 0, 1, 2], 61: [1, 0, 2, 3, 4], 62: [0], 63: [0, 1, -1, -1,
2]}

???

util.sensors._EVENT_MODE = [[], [], [], [], [], []]
???

util.sensors._PORT_INDEX_MAP = ['A', 'B', 'C', 'D', 'E', 'F', 'ACCELEROMETER',
'GYROSCOPE', 'POSITION', 'ORIENTATION', 'TIMER']

???

util.sensors._PORT_TYPE = [0, 0, 0, 0, 0, 0]
???

1.4. Libraries specific to the Technic Hub 131

MicroPython Lego RI5 Documentation, Release 1.11

util.sensors._NO_DATA = ()
???

util.sensors._SYNC_DISPLAY = False
???

util.sensors._DEFAULT_MODE = {48: [(1, 0), (2, 2), (3, 1), (0, 0)], 65: [(1, 0), (2,
2), (3, 1), (1, 0)], 49: [(1, 0), (2, 2), (3, 1), (0, 0)], 75: [(1, 0), (2, 2), (3, 1),
(0, 0)], 76: [(1, 0), (2, 2), (3, 1), (0, 0)], 61: [(1, 0), (0, 0), (5, 0), (5, 1), (5,
2)], 62: [(0, 0)], 63: [(0, 0), (1, 0), (4, 0)]}

???

util.sensors._MOTOR_TYPES = [65, 48, 49, 75, 76]
List of the LPF2 type IDs that correspond to motors.

Imports

• Module hub – hub brick functionality

• Function micropython.const

• Function util.scratch.orientation_to_number

• Function util.time.get_time

• Constant util.constants.LPF2_FLIPPER_MOTOR_MEDIUM = 48

• Constant util.constants.LPF2_FLIPPER_MOTOR_LARGE = 49

• Constant util.constants.LPF2_FLIPPER_COLOR = 61

• Constant util.constants.LPF2_FLIPPER_DISTANCE = 62

• Constant util.constants.LPF2_FLIPPER_FORCE = 63

• Constant util.constants.LPF2_FLIPPER_MOTOR_SMALL = 65

• Constant util.constants.LPF2_STONE_GREY_MOTOR_MEDIUM = 75

• Constant util.constants.LPF2_STONE_GREY_MOTOR_LARGE = 76

util.time – time utility module

???

Functions

util.time.reset_time(???)
???

util.time.get_time(???)
???

util.time.start_time(???)
???

util.time.stop_time(???)
???

132 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

Variables

util.time._STOPPED_AT
??? Observed value: 0

util.time._STARTED_AT
??? Observed value: 1680

util.time._RUNNING
??? Observed value: False

Imports

• Function utime.ticks_diff

• Function utime.ticks_ms

util.error_handler – error handling utility module

???

Constants

util.error_handler.error_handler = <Main ErrorHandler object>

util.error_handler.PROGRAM_EXECUTION_ERROR = 0
???

util.error_handler.PROGRAM_EXECUTION_MEMORY_ERROR = 1
???

ErrorHandler Class

class util.error_handler.ErrorHandler(???)
???

handle_user_program_error(???)
???

handle_notify_error(???)
???

handle_runtime_error(???)
???

initialize(???)
???

_emit_runtime_error(???)
???

_handle_error(???)
???

1.4. Libraries specific to the Technic Hub 133

MicroPython Lego RI5 Documentation, Release 1.11

Imports

• Module hub – hub brick functionality

• Module protocol.notifications – ???

• Module sys – system specific functions

• Module uio – input/output streams

• Module ure – simple regular expressions

• Module version – version module

• Function event_loop.get_event_loop

• Function micropython.const

• Function ubinascii.b2a_base64

• Function util.log.log_critical_error

• Constant util.color.BLACK = (0, 0, 0)

• Constant util.color.RED = (255, 0, 0)

util.log – log utility module

???

Functions

util.log.log_to_file(???)
???

util.log.log_critical_error(???)
???

util.log.clear_log(???)
???

util.log._write_to_log(???)
???

util.log.timed_function(???)
???

util.log.cat_log(???)
???

134 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

Constants

util.log._LOG_FILE = ./runtime.log
Location of the log file for logging.

Variables

util.log.timed_fn_buffer
??? Observed value: []

Imports

• Module gc – control the garbage collector

• Module sys – system specific functions

• Module uio – input/output streams

• Module uos – basic “operating system” services

• Module utime – time related functions

util.schedule – scheduling utility module

???

Functions

util.schedule.mp_schedule(???)
???

Imports

• Module micropython – access and control MicroPython internals

util.print_override – remote printing module

???

Functions

util.print_override.spikeprint(???)
???

1.4. Libraries specific to the Technic Hub 135

MicroPython Lego RI5 Documentation, Release 1.11

Constants

util.print_override._NOT_CONNECTED_ERROR = The programming app is not connected to the
hub.

Error message for when there’s no connection to the app (computer or phone).

Imports

• Module Builtin functions and exceptions

• Module uio – input/output streams

• Class protocol.ujsonrpc.JSONRPC

• Function ubinascii.b2a_base64

• Function utime.ticks_diff

• Function utime.ticks_ms

• Constant util.constants.BT_VCP = BT_VCP(0)

• Constant util.constants.USB_VCP = USB_VCP(0)

util.constants – constants module

???

Constants

util.constants.LPF2_FLIPPER_MOTOR_MEDIUM = 48

util.constants.LPF2_FLIPPER_MOTOR_LARGE = 49

util.constants.LPF2_ACCELERATION = 57

util.constants.LPF2_GYRO = 58

util.constants.LPF2_ORIENTATION = 59

util.constants.LPF2_FLIPPER_COLOR = 61

util.constants.LPF2_FLIPPER_DISTANCE = 62

util.constants.LPF2_FLIPPER_FORCE = 63

util.constants.LPF2_FLIPPER_MOTOR_SMALL = 65

util.constants.LPF2_STONE_GREY_MOTOR_MEDIUM = 75

util.constants.LPF2_STONE_GREY_MOTOR_LARGE = 76
Constants to represent various types of input device. They correspond to official PoweredUp/SpikePrime Type
IDs - see for example https://github.com/pybricks/technical-info/blob/master/assigned-numbers.md

util.constants.MOTOR_TYPES = (65, 48, 49, 75, 76)
A tuple specifying which of the above types are motors.

136 Chapter 1. MicroPython libraries

https://github.com/pybricks/technical-info/blob/master/assigned-numbers.md

MicroPython Lego RI5 Documentation, Release 1.11

util.constants.DEFAULT_IMAGE = (Image('09090:99999:99999:09990:00900:'),
Image('09000:09900:09990:09900:09000:'))

Two Image objects that are the default initial display screens on the Spike Prime and the RI5 firmwares respec-
tively.

util.constants.SLOTS_IMAGE = (Image('09990:09090:09090:09090:09990:'),
Image('00900:09900:00900:00900:09990:'), Image('09990:00090:09990:09000:09990:'),
Image('09990:00090:09990:00090:09990:'), Image('09090:09090:09990:00090:00090:'),
Image('09990:09000:09990:00090:09990:'), Image('09990:09000:09990:09090:09990:'),
Image('09990:00090:00900:09000:09000:'), Image('09990:09090:09990:09090:09990:'),
Image('09990:09090:09990:00090:09990:'), Image('90999:90909:90909:90909:90999:'),
Image('09009:99099:09009:09009:09009:'), Image('90999:90009:90999:90900:90999:'),
Image('90999:90009:90999:90009:90999:'), Image('90909:90909:90999:90009:90009:'),
Image('90999:90900:90999:90009:90999:'), Image('90999:90900:90999:90909:90999:'),
Image('90999:90009:90090:90900:90900:'), Image('90999:90909:90999:90909:90999:'),
Image('90999:90909:90999:90009:90999:'))

Image objects shown in the menu system when navigating between slots (they are the numbers 0 - 19).

util.constants.PORTS = {'C': Port(C), 'B': Port(B), 'D': Port(D), 'E': Port(E), 'A':
Port(A), 'F': Port(F)}

Dictionary mapping port names to the corresponding Port objects (see hub.Port).

util.constants.FLOAT = 0

util.constants.BRAKE = 1

util.constants.HOLD = 2
Modes of operation for stopping a motor. FLOAT simply removes power and allows coasting, while BRAKE
reverses power to stop the motor as soon as possible, and HOLD mode will deliberately try to return to the braked
point if it is moved away from it.

util.constants.USB_VCP = USB_VCP(0)

util.constants.BT_VCP = BT_VCP(0)
Aliases for the main USB and Bluetooth objects on the Hub. See hub.USB_VCP and hub.BT_VCP.

util.constants.NO_KEY = -1

util.constants.NUMBER = 0

util.constants.STRING = 1

util.constants.BOOLEAN = 2

util.constants.VAR_DEFAULTS = {0: 0, 1: '', 2: False}
Imported by util.scratch – scratch utility module. Seems to be representing basic scratch data types numerically,
with a dictionary to look up their default values.

util.constants.TIMER_PACE_LOW = 48

util.constants.TIMER_PACE_HIGH = 16
Imported by programrunner – run user programs and hub_runtime – Hub main module. ???

util.constants.INACTIVE_SHUTDOWN_MS = 300000

util.constants.INACTIVE_SHUTDOWN_BT_MS = 1200000
Imported by ui.hubui. Presumably they represent the length of inactive time before the system shuts down.
Perhaps when running alone, and when connected to bluetooth?

util.constants.LONG_PRESS_MS = 3000
Not obviously used anywhere. ???

util.constants.SUCCESS = 0

1.4. Libraries specific to the Technic Hub 137

MicroPython Lego RI5 Documentation, Release 1.11

util.constants.INTERRUPTED = 1
Seems to represent return codes of some function somewhere. Success code is imported in various places. ???

util.constants.STALLED = 2
Not obviously used anywhere. May belong to the previous group? ???

util.constants.NO_STATUS = -1
Imported by various methods submodules in the commands – commands module module. ???

util.constants.DATA_DIR = /data

util.constants.LINEGRAPH_DIR = /data/linegraph

util.constants.LOCAL_NAME = /local_name.txt
Important things in the local filesystem. ???

Sounds Class

class util.constants.Sounds(???)
???

Constants
Looks like filesystem locations of sounds associated with certain system operations.

NAVIGATION = sounds/menu_click
???

NAVIGATION_FAST = sounds/menu_fastback
???

STARTUP = sounds/startup
???

SHUTDOWN = sounds/menu_shutdown
???

PROGRAM_STOP = sounds/menu_program_stop
???

PROGRAM_START = sounds/menu_program_start
???

Image Class

class util.constants.Image(???)
??? I’m not quite clear whether this class principally lives here or in hub – hub brick functionality. . .

Methods
width(???)

???

height(???)
???

get_pixel(???)
???

set_pixel(???)
???

138 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

shift_left(???)
???

shift_right(???)
???

shift_up(???)
???

shift_down(???)
???

Constants
HEART = Image('09090:99999:99999:09990:00900:')

HEART_SMALL = Image('00000:09090:09990:00900:00000:')

HAPPY = Image('00000:09090:00000:90009:09990:')

SMILE = Image('00000:00000:00000:90009:09990:')

SAD = Image('00000:09090:00000:09990:90009:')

CONFUSED = Image('00000:09090:00000:09090:90909:')

ANGRY = Image('90009:09090:00000:99999:90909:')

ASLEEP = Image('00000:99099:00000:09990:00000:')

SURPRISED = Image('09090:00000:00900:09090:00900:')

SILLY = Image('90009:00000:99999:00909:00999:')

FABULOUS = Image('99999:99099:00000:09090:09990:')

MEH = Image('09090:00000:00090:00900:09000:')

YES = Image('00000:00009:00090:90900:09000:')

NO = Image('90009:09090:00900:09090:90009:')

CLOCK12 = Image('00900:00900:00900:00000:00000:')

CLOCK1 = Image('00090:00090:00900:00000:00000:')

CLOCK2 = Image('00000:00099:00900:00000:00000:')

CLOCK3 = Image('00000:00000:00999:00000:00000:')

CLOCK4 = Image('00000:00000:00900:00099:00000:')

CLOCK5 = Image('00000:00000:00900:00090:00090:')

CLOCK6 = Image('00000:00000:00900:00900:00900:')

CLOCK7 = Image('00000:00000:00900:09000:09000:')

CLOCK8 = Image('00000:00000:00900:99000:00000:')

CLOCK9 = Image('00000:00000:99900:00000:00000:')

CLOCK10 = Image('00000:99000:00900:00000:00000:')

CLOCK11 = Image('09000:09000:00900:00000:00000:')

ARROW_N = Image('00900:09990:90909:00900:00900:')

ARROW_NE = Image('00999:00099:00909:09000:90000:')

1.4. Libraries specific to the Technic Hub 139

MicroPython Lego RI5 Documentation, Release 1.11

ARROW_E = Image('00900:00090:99999:00090:00900:')

ARROW_SE = Image('90000:09000:00909:00099:00999:')

ARROW_S = Image('00900:00900:90909:09990:00900:')

ARROW_SW = Image('00009:00090:90900:99000:99900:')

ARROW_W = Image('00900:09000:99999:09000:00900:')

ARROW_NW = Image('99900:99000:90900:00090:00009:')

GO_RIGHT = Image('09000:09900:09990:09900:09000:')

GO_LEFT = Image('00090:00990:09990:00990:00090:')

GO_UP = Image('00000:00900:09990:99999:00000:')

GO_DOWN = Image('00000:99999:09990:00900:00000:')

TRIANGLE = Image('00000:00900:09090:99999:00000:')

TRIANGLE_LEFT = Image('90000:99000:90900:90090:99999:')

CHESSBOARD = Image('09090:90909:09090:90909:09090:')

DIAMOND = Image('00900:09090:90009:09090:00900:')

DIAMOND_SMALL = Image('00000:00900:09090:00900:00000:')

SQUARE = Image('99999:90009:90009:90009:99999:')

SQUARE_SMALL = Image('00000:09990:09090:09990:00000:')

RABBIT = Image('90900:90900:99990:99090:99990:')

COW = Image('90009:90009:99999:09990:00900:')

MUSIC_CROTCHET = Image('00900:00900:00900:99900:99900:')

MUSIC_QUAVER = Image('00900:00990:00909:99900:99900:')

MUSIC_QUAVERS = Image('09999:09009:09009:99099:99099:')

PITCHFORK = Image('90909:90909:99999:00900:00900:')

XMAS = Image('00900:09990:00900:09990:99999:')

PACMAN = Image('09999:99090:99900:99990:09999:')

TARGET = Image('00900:09990:99099:09990:00900:')

TSHIRT = Image('99099:99999:09990:09990:09990:')

ROLLERSKATE = Image('00099:00099:99999:99999:09090:')

DUCK = Image('09900:99900:09999:09990:00000:')

HOUSE = Image('00900:09990:99999:09990:09090:')

TORTOISE = Image('00000:09990:99999:09090:00000:')

BUTTERFLY = Image('99099:99999:00900:99999:99099:')

STICKFIGURE = Image('00900:99999:00900:09090:90009:')

GHOST = Image('99999:90909:99999:99999:90909:')

SWORD = Image('00900:00900:00900:09990:00900:')

GIRAFFE = Image('99000:09000:09000:09990:09090:')

140 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

SKULL = Image('09990:90909:99999:09990:09990:')

UMBRELLA = Image('09990:99999:00900:90900:09900:')

SNAKE = Image('99000:99099:09090:09990:00000:')
These are all Image objects containing the pictures suggested by their names.

ALL_CLOCKS = (Image('00900:00900:00900:00000:00000:'),
Image('00090:00090:00900:00000:00000:'), Image('00000:00099:00900:00000:00000:'),
Image('00000:00000:00999:00000:00000:'), Image('00000:00000:00900:00099:00000:'),
Image('00000:00000:00900:00090:00090:'), Image('00000:00000:00900:00900:00900:'),
Image('00000:00000:00900:09000:09000:'), Image('00000:00000:00900:99000:00000:'),
Image('00000:00000:99900:00000:00000:'), Image('00000:99000:00900:00000:00000:'),
Image('09000:09000:00900:00000:00000:'))

ALL_ARROWS = (Image('00900:09990:90909:00900:00900:'),
Image('00999:00099:00909:09000:90000:'), Image('00900:00090:99999:00090:00900:'),
Image('90000:09000:00909:00099:00999:'), Image('00900:00900:90909:09990:00900:'),
Image('00009:00090:90900:99000:99900:'), Image('00900:09000:99999:09000:00900:'),
Image('99900:99000:90900:00090:00009:'))

A couple of tuples of sets of images you might want to iterate though.

Imports

• Module hub – hub brick functionality

• Function micropython.const

util.rotation – rotation utility module

???

Functions

util.rotation.dir_to_rotation(???)
???

util.rotation.rotate_hub_display(???)
???

util.rotation.rotate_hub_display_to_value(???)
???

util.rotation.rotate_hub_display_to_orientation(???)
???

1.4. Libraries specific to the Technic Hub 141

MicroPython Lego RI5 Documentation, Release 1.11

Variables

util.rotation._CURRENT_ROTATION
??? Observed value: 0

Imports

• Module hub – hub brick functionality

1.4.14 hub_runtime – Hub main module

Seems to be the main module on the Hub, in charge of startup and error handling.

Functions

hub_runtime.__connection_changed(???)
???

hub_runtime.init(???)
???

hub_runtime.start(???)
???

Imports

• Module hub – hub brick functionality

• Module runtime – runtime module

• Module util.scratch – scratch utility module

• Module util.sensors – sensors utility module

• Class commands.LinegraphMonitorMethods

• Class commands.SoundMethods

• Class programrunner.ProgramRunner

• Class ui.hubui.HubUI

• Class commands.LightMethods

• Class commands.ProgramMethods

• Class commands.MotorMethods

• Class commands.HubMethods

• Class protocol.RPCProtocol

• Class commands.WaitMethods

• Class util.resetter.RTTimer

• Class class Timer – control hardware timers

• Class commands.MoveMethods

142 Chapter 1. MicroPython libraries

MicroPython Lego RI5 Documentation, Release 1.11

• Function event_loop.get_event_loop

• Function protocol.notifications.notify_gesture_event

• Function util.sensors.register_ports

• Function util.storage.pop_force_reset

• Constant system.system = <Main System object>

• Constant util.constants.BT_VCP = BT_VCP(0) <Bluetooth connection object>

• Constant util.constants.USB_VCP = USB_VCP(0) <USB connection object>

• Constant util.constants.TIMER_PACE_HIGH = 16

• Constant util.error_handler.error_handler = <Main ErrorHandler object>

1.4.15 version – version module

Just contains the version!

Constants

__version__ = 2.1.4-mindstorms.13

File main.py is also found in the filesystem, but do not import it as it will restart the hub and require a battery re-
moval/reinsert to get the hub working again! You can technically “import” boot, projects, sounds, extra_files, but by
default they’re empty of Python content so they do nothing.

1.4. Libraries specific to the Technic Hub 143

MicroPython Lego RI5 Documentation, Release 1.11

144 Chapter 1. MicroPython libraries

CHAPTER

TWO

THE MICROPYTHON LANGUAGE

MicroPython aims to implement the Python 3.4 standard (with selected features from later versions) with respect to
language syntax, and most of the features of MicroPython are identical to those described by the “Language Reference”
documentation at docs.python.org.

The MicroPython standard library is described in the corresponding chapter. The cpython_diffs chapter describes dif-
ferences between MicroPython and CPython (which mostly concern standard library and types, but also some language-
level features).

This chapter describes features and peculiarities of MicroPython implementation and the best practices to use them.

2.1 Glossary

baremetal A system without a (full-fledged) OS, for example an MCU-based system. When running on a baremetal
system, MicroPython effectively becomes its user-facing OS with a command interpreter (REPL).

board A PCB board. Oftentimes, the term is used to denote a particular model of an MCU system. Sometimes, it is
used to actually refer to MicroPython port to a particular board (and then may also refer to “boardless” ports like
Unix port).

callee-owned tuple A tuple returned by some builtin function/method, containing data which is valid for a limited time,
usually until next call to the same function (or a group of related functions). After next call, data in the tuple
may be changed. This leads to the following restriction on the usage of callee-owned tuples - references to them
cannot be stored. The only valid operation is extracting values from them (including making a copy). Callee-
owned tuples is a MicroPython-specific construct (not available in the general Python language), introduced for
memory allocation optimization. The idea is that callee-owned tuple is allocated once and stored on the callee
side. Subsequent calls don’t require allocation, allowing to return multiple values when allocation is not possible
(e.g. in interrupt context) or not desirable (because allocation inherently leads to memory fragmentation). Note
that callee-owned tuples are effectively mutable tuples, making an exception to Python’s rule that tuples are
immutable. (It may be interesting why tuples were used for such a purpose then, instead of mutable lists - the
reason for that is that lists are mutable from user application side too, so a user could do things to a callee-owned
list which the callee doesn’t expect and could lead to problems; a tuple is protected from this.)

CPython CPython is the reference implementation of Python programming language, and the most well-known one,
which most of the people run. It is however one of many implementations (among which Jython, IronPython,
PyPy, and many more, including MicroPython). As there is no formal specification of the Python language, only
CPython documentation, it is not always easy to draw a line between Python the language and CPython its partic-
ular implementation. This however leaves more freedom for other implementations. For example, MicroPython
does a lot of things differently than CPython, while still aspiring to be a Python language implementation.

GPIO General-purpose input/output. The simplest means to control electrical signals. With GPIO, user can config-
ure hardware signal pin to be either input or output, and set or get its digital signal value (logical “0” or “1”).
MicroPython abstracts GPIO access using machine.Pin and machine.Signal classes.

145

https://docs.python.org/3/reference/index.html

MicroPython Lego RI5 Documentation, Release 1.11

GPIO port A group of GPIO pins, usually based on hardware properties of these pins (e.g. controllable by the same
register).

interned string A string referenced by its (unique) identity rather than its address. Interned strings are thus can be
quickly compared just by their identifiers, instead of comparing by content. The drawbacks of interned strings
are that interning operation takes time (proportional to the number of existing interned strings, i.e. becoming
slower and slower over time) and that the space used for interned strings is not reclaimable. String interning is
done automatically by MicroPython compiler and runtimer when it’s either required by the implementation (e.g.
function keyword arguments are represented by interned string id’s) or deemed beneficial (e.g. for short enough
strings, which have a chance to be repeated, and thus interning them would save memory on copies). Most of
string and I/O operations don’t produce interned strings due to drawbacks described above.

MCU Microcontroller. Microcontrollers usually have much less resources than a full-fledged computing system, but
smaller, cheaper and require much less power. MicroPython is designed to be small and optimized enough to
run on an average modern microcontroller.

micropython-lib MicroPython is (usually) distributed as a single executable/binary file with just few builtin modules.
There is no extensive standard library comparable with CPython. Instead, there is a related, but separate project
micropython-lib which provides implementations for many modules from CPython’s standard library. However,
large subset of these modules require POSIX-like environment (Linux, FreeBSD, MacOS, etc.; Windows may
be partially supported), and thus would work or make sense only with MicroPython Unix port. Some subset
of modules is however usable for baremetal ports too.

Unlike monolithic CPython stdlib, micropython-lib modules are intended to be installed individually - either
using manual copying or using upip.

MicroPython port MicroPython supports different boards, RTOSes, and OSes, and can be relatively easily adapted to
new systems. MicroPython with support for a particular system is called a “port” to that system. Different ports
may have widely different functionality. This documentation is intended to be a reference of the generic APIs
available across different ports (“MicroPython core”). Note that some ports may still omit some APIs described
here (e.g. due to resource constraints). Any such differences, and port-specific extensions beyond MicroPython
core functionality, would be described in the separate port-specific documentation.

MicroPython Unix port Unix port is one of the major MicroPython ports. It is intended to run on POSIX-compatible
operating systems, like Linux, MacOS, FreeBSD, Solaris, etc. It also serves as the basis of Windows port. The
importance of Unix port lies in the fact that while there are many different boards, so two random users unlikely
have the same board, almost all modern OSes have some level of POSIX compatibility, so Unix port serves as
a kind of “common ground” to which any user can have access. So, Unix port is used for initial prototyping,
different kinds of testing, development of machine-independent features, etc. All users of MicroPython, even
those which are interested only in running MicroPython on MCU systems, are recommended to be familiar with
Unix (or Windows) port, as it is important productivity helper and a part of normal MicroPython workflow.

port Either MicroPython port or GPIO port. If not clear from context, it’s recommended to use full specification like
one of the above.

stream Also known as a “file-like object”. An object which provides sequential read-write access to the underlying
data. A stream object implements a corresponding interface, which consists of methods like read(), write(),
readinto(), seek(), flush(), close(), etc. A stream is an important concept in MicroPython, many I/O ob-
jects implement the stream interface, and thus can be used consistently and interchangeably in different contexts.
For more information on streams in MicroPython, see uio module.

upip (Literally, “micro pip”). A package manage for MicroPython, inspired by CPython’s pip, but much smaller and
with reduced functionality. upip runs both on Unix port and on baremetal ports (those which offer filesystem
and networking support).

146 Chapter 2. The MicroPython language

https://github.com/micropython/micropython-lib

MicroPython Lego RI5 Documentation, Release 1.11

2.2 The MicroPython Interactive Interpreter Mode (aka REPL)

This section covers some characteristics of the MicroPython Interactive Interpreter Mode. A commonly used term for
this is REPL (read-eval-print-loop) which will be used to refer to this interactive prompt.

2.2.1 Auto-indent

When typing python statements which end in a colon (for example if, for, while) then the prompt will change to three
dots (. . .) and the cursor will be indented by 4 spaces. When you press return, the next line will continue at the same
level of indentation for regular statements or an additional level of indentation where appropriate. If you press the
backspace key then it will undo one level of indentation.

If your cursor is all the way back at the beginning, pressing RETURN will then execute the code that you’ve entered.
The following shows what you’d see after entering a for statement (the underscore shows where the cursor winds up):

>>> for i in range(30):
... _

If you then enter an if statement, an additional level of indentation will be provided:

>>> for i in range(30):
... if i > 3:
... _

Now enter break followed by RETURN and press BACKSPACE:

>>> for i in range(30):
... if i > 3:
... break
... _

Finally type print(i), press RETURN, press BACKSPACE and press RETURN again:

>>> for i in range(30):
... if i > 3:
... break
... print(i)
...
0
1
2
3
>>>

Auto-indent won’t be applied if the previous two lines were all spaces. This means that you can finish entering a
compound statement by pressing RETURN twice, and then a third press will finish and execute.

2.2. The MicroPython Interactive Interpreter Mode (aka REPL) 147

MicroPython Lego RI5 Documentation, Release 1.11

2.2.2 Auto-completion

While typing a command at the REPL, if the line typed so far corresponds to the beginning of the name of something,
then pressing TAB will show possible things that could be entered. For example, first import the machine module by
entering import machine and pressing RETURN. Then type m and press TAB and it should expand to machine.
Enter a dot . and press TAB again. You should see something like:

>>> machine.
__name__ info unique_id reset
bootloader freq rng idle
sleep deepsleep disable_irq enable_irq
Pin

The word will be expanded as much as possible until multiple possibilities exist. For example, type machine.Pin.
AF3 and press TAB and it will expand to machine.Pin.AF3_TIM. Pressing TAB a second time will show the possible
expansions:

>>> machine.Pin.AF3_TIM
AF3_TIM10 AF3_TIM11 AF3_TIM8 AF3_TIM9
>>> machine.Pin.AF3_TIM

2.2.3 Interrupting a running program

You can interrupt a running program by pressing Ctrl-C. This will raise a KeyboardInterrupt which will bring you back
to the REPL, providing your program doesn’t intercept the KeyboardInterrupt exception.

For example:

>>> for i in range(1000000):
... print(i)
...
0
1
2
3
...
6466
6467
6468
Traceback (most recent call last):
File "<stdin>", line 2, in <module>

KeyboardInterrupt:
>>>

148 Chapter 2. The MicroPython language

MicroPython Lego RI5 Documentation, Release 1.11

2.2.4 Paste Mode

If you want to paste some code into your terminal window, the auto-indent feature will mess things up. For example, if
you had the following python code:

def foo():
print('This is a test to show paste mode')
print('Here is a second line')

foo()

and you try to paste this into the normal REPL, then you will see something like this:

>>> def foo():
... print('This is a test to show paste mode')
... print('Here is a second line')
... foo()
...
File "<stdin>", line 3

IndentationError: unexpected indent

If you press Ctrl-E, then you will enter paste mode, which essentially turns off the auto-indent feature, and changes the
prompt from >>> to ===. For example:

>>>
paste mode; Ctrl-C to cancel, Ctrl-D to finish
=== def foo():
=== print('This is a test to show paste mode')
=== print('Here is a second line')
=== foo()
===
This is a test to show paste mode
Here is a second line
>>>

Paste Mode allows blank lines to be pasted. The pasted text is compiled as if it were a file. Pressing Ctrl-D exits paste
mode and initiates the compilation.

2.2.5 Soft Reset

A soft reset will reset the python interpreter, but tries not to reset the method by which you’re connected to the Mi-
croPython board (USB-serial, or Wifi).

You can perform a soft reset from the REPL by pressing Ctrl-D, or from your python code by executing:

machine.soft_reset()

For example, if you reset your MicroPython board, and you execute a dir() command, you’d see something like this:

>>> dir()
['__name__', 'pyb']

Now create some variables and repeat the dir() command:

2.2. The MicroPython Interactive Interpreter Mode (aka REPL) 149

MicroPython Lego RI5 Documentation, Release 1.11

>>> i = 1
>>> j = 23
>>> x = 'abc'
>>> dir()
['j', 'x', '__name__', 'pyb', 'i']
>>>

Now if you enter Ctrl-D, and repeat the dir() command, you’ll see that your variables no longer exist:

MPY: sync filesystems
MPY: soft reboot
MicroPython v1.5-51-g6f70283-dirty on 2015-10-30; PYBv1.0 with STM32F405RG
Type "help()" for more information.
>>> dir()
['__name__', 'pyb']
>>>

2.2.6 The special variable _ (underscore)

When you use the REPL, you may perform computations and see the results. MicroPython stores the results of the
previous statement in the variable _ (underscore). So you can use the underscore to save the result in a variable. For
example:

>>> 1 + 2 + 3 + 4 + 5
15
>>> x = _
>>> x
15
>>>

2.2.7 Raw Mode

Raw mode is not something that a person would normally use. It is intended for programmatic use. It essentially
behaves like paste mode with echo turned off.

Raw mode is entered using Ctrl-A. You then send your python code, followed by a Ctrl-D. The Ctrl-D will be acknowl-
edged by ‘OK’ and then the python code will be compiled and executed. Any output (or errors) will be sent back.
Entering Ctrl-B will leave raw mode and return the the regular (aka friendly) REPL.

The tools/pyboard.py program uses the raw REPL to execute python files on the MicroPython board.

2.3 Writing interrupt handlers

On suitable hardware MicroPython offers the ability to write interrupt handlers in Python. Interrupt handlers - also
known as interrupt service routines (ISR’s) - are defined as callback functions. These are executed in response to
an event such as a timer trigger or a voltage change on a pin. Such events can occur at any point in the execution
of the program code. This carries significant consequences, some specific to the MicroPython language. Others are
common to all systems capable of responding to real time events. This document covers the language specific issues
first, followed by a brief introduction to real time programming for those new to it.

150 Chapter 2. The MicroPython language

MicroPython Lego RI5 Documentation, Release 1.11

This introduction uses vague terms like “slow” or “as fast as possible”. This is deliberate, as speeds are application
dependent. Acceptable durations for an ISR are dependent on the rate at which interrupts occur, the nature of the main
program, and the presence of other concurrent events.

2.3.1 Tips and recommended practices

This summarises the points detailed below and lists the principal recommendations for interrupt handler code.

• Keep the code as short and simple as possible.

• Avoid memory allocation: no appending to lists or insertion into dictionaries, no floating point.

• Consider using micropython.schedule to work around the above constraint.

• Where an ISR returns multiple bytes use a pre-allocated bytearray. If multiple integers are to be shared between
an ISR and the main program consider an array (array.array).

• Where data is shared between the main program and an ISR, consider disabling interrupts prior to accessing the
data in the main program and re-enabling them immediately afterwards (see Critical Sections).

• Allocate an emergency exception buffer (see below).

2.3.2 MicroPython Issues

The emergency exception buffer

If an error occurs in an ISR, MicroPython is unable to produce an error report unless a special buffer is created for the
purpose. Debugging is simplified if the following code is included in any program using interrupts.

import micropython
micropython.alloc_emergency_exception_buf(100)

Simplicity

For a variety of reasons it is important to keep ISR code as short and simple as possible. It should do only what has to
be done immediately after the event which caused it: operations which can be deferred should be delegated to the main
program loop. Typically an ISR will deal with the hardware device which caused the interrupt, making it ready for the
next interrupt to occur. It will communicate with the main loop by updating shared data to indicate that the interrupt
has occurred, and it will return. An ISR should return control to the main loop as quickly as possible. This is not a
specific MicroPython issue so is covered in more detail below.

Communication between an ISR and the main program

Normally an ISR needs to communicate with the main program. The simplest means of doing this is via one or more
shared data objects, either declared as global or shared via a class (see below). There are various restrictions and hazards
around doing this, which are covered in more detail below. Integers, bytes and bytearray objects are commonly used
for this purpose along with arrays (from the array module) which can store various data types.

2.3. Writing interrupt handlers 151

MicroPython Lego RI5 Documentation, Release 1.11

The use of object methods as callbacks

MicroPython supports this powerful technique which enables an ISR to share instance variables with the underlying
code. It also enables a class implementing a device driver to support multiple device instances. The following example
causes two LED’s to flash at different rates.

import pyb, micropython
micropython.alloc_emergency_exception_buf(100)
class Foo(object):

def __init__(self, timer, led):
self.led = led
timer.callback(self.cb)

def cb(self, tim):
self.led.toggle()

red = Foo(pyb.Timer(4, freq=1), pyb.LED(1))
green = Foo(pyb.Timer(2, freq=0.8), pyb.LED(2))

In this example the red instance associates timer 4 with LED 1: when a timer 4 interrupt occurs red.cb() is called
causing LED 1 to change state. The green instance operates similarly: a timer 2 interrupt results in the execution of
green.cb() and toggles LED 2. The use of instance methods confers two benefits. Firstly a single class enables code
to be shared between multiple hardware instances. Secondly, as a bound method the callback function’s first argument
is self. This enables the callback to access instance data and to save state between successive calls. For example, if
the class above had a variable self.count set to zero in the constructor, cb() could increment the counter. The red
and green instances would then maintain independent counts of the number of times each LED had changed state.

Creation of Python objects

ISR’s cannot create instances of Python objects. This is because MicroPython needs to allocate memory for the object
from a store of free memory block called the heap. This is not permitted in an interrupt handler because heap allocation
is not re-entrant. In other words the interrupt might occur when the main program is part way through performing an
allocation - to maintain the integrity of the heap the interpreter disallows memory allocations in ISR code.

A consequence of this is that ISR’s can’t use floating point arithmetic; this is because floats are Python objects. Similarly
an ISR can’t append an item to a list. In practice it can be hard to determine exactly which code constructs will attempt
to perform memory allocation and provoke an error message: another reason for keeping ISR code short and simple.

One way to avoid this issue is for the ISR to use pre-allocated buffers. For example a class constructor creates a
bytearray instance and a boolean flag. The ISR method assigns data to locations in the buffer and sets the flag. The
memory allocation occurs in the main program code when the object is instantiated rather than in the ISR.

The MicroPython library I/O methods usually provide an option to use a pre-allocated buffer. For example pyb.i2c.
recv() can accept a mutable buffer as its first argument: this enables its use in an ISR.

A means of creating an object without employing a class or globals is as follows:

def set_volume(t, buf=bytearray(3)):
buf[0] = 0xa5
buf[1] = t >> 4
buf[2] = 0x5a
return buf

The compiler instantiates the default buf argument when the function is loaded for the first time (usually when the
module it’s in is imported).

152 Chapter 2. The MicroPython language

MicroPython Lego RI5 Documentation, Release 1.11

An instance of object creation occurs when a reference to a bound method is created. This means that an ISR cannot
pass a bound method to a function. One solution is to create a reference to the bound method in the class constructor
and to pass that reference in the ISR. For example:

class Foo():
def __init__(self):

self.bar_ref = self.bar # Allocation occurs here
self.x = 0.1
tim = pyb.Timer(4)
tim.init(freq=2)
tim.callback(self.cb)

def bar(self, _):
self.x *= 1.2
print(self.x)

def cb(self, t):
Passing self.bar would cause allocation.
micropython.schedule(self.bar_ref, 0)

Other techniques are to define and instantiate the method in the constructor or to pass Foo.bar() with the argument
self.

Use of Python objects

A further restriction on objects arises because of the way Python works. When an import statement is executed
the Python code is compiled to bytecode, with one line of code typically mapping to multiple bytecodes. When the
code runs the interpreter reads each bytecode and executes it as a series of machine code instructions. Given that
an interrupt can occur at any time between machine code instructions, the original line of Python code may be only
partially executed. Consequently a Python object such as a set, list or dictionary modified in the main loop may lack
internal consistency at the moment the interrupt occurs.

A typical outcome is as follows. On rare occasions the ISR will run at the precise moment in time when the object is
partially updated. When the ISR tries to read the object, a crash results. Because such problems typically occur on
rare, random occasions they can be hard to diagnose. There are ways to circumvent this issue, described in Critical
Sections below.

It is important to be clear about what constitutes the modification of an object. An alteration to a built-in type such as
a dictionary is problematic. Altering the contents of an array or bytearray is not. This is because bytes or words are
written as a single machine code instruction which is not interruptible: in the parlance of real time programming the
write is atomic. A user defined object might instantiate an integer, array or bytearray. It is valid for both the main loop
and the ISR to alter the contents of these.

MicroPython supports integers of arbitrary precision. Values between 2**30 -1 and -2**30 will be stored in a single
machine word. Larger values are stored as Python objects. Consequently changes to long integers cannot be considered
atomic. The use of long integers in ISR’s is unsafe because memory allocation may be attempted as the variable’s value
changes.

2.3. Writing interrupt handlers 153

MicroPython Lego RI5 Documentation, Release 1.11

Overcoming the float limitation

In general it is best to avoid using floats in ISR code: hardware devices normally handle integers and conversion to
floats is normally done in the main loop. However there are a few DSP algorithms which require floating point. On
platforms with hardware floating point (such as the Pyboard) the inline ARM Thumb assembler can be used to work
round this limitation. This is because the processor stores float values in a machine word; values can be shared between
the ISR and main program code via an array of floats.

Using micropython.schedule

This function enables an ISR to schedule a callback for execution “very soon”. The callback is queued for execution
which will take place at a time when the heap is not locked. Hence it can create Python objects and use floats. The
callback is also guaranteed to run at a time when the main program has completed any update of Python objects, so the
callback will not encounter partially updated objects.

Typical usage is to handle sensor hardware. The ISR acquires data from the hardware and enables it to issue a further
interrupt. It then schedules a callback to process the data.

Scheduled callbacks should comply with the principles of interrupt handler design outlined below. This is to avoid
problems resulting from I/O activity and the modification of shared data which can arise in any code which pre-empts
the main program loop.

Execution time needs to be considered in relation to the frequency with which interrupts can occur. If an interrupt
occurs while the previous callback is executing, a further instance of the callback will be queued for execution; this
will run after the current instance has completed. A sustained high interrupt repetition rate therefore carries a risk of
unconstrained queue growth and eventual failure with a RuntimeError.

If the callback to be passed to schedule() is a bound method, consider the note in “Creation of Python objects”.

2.3.3 Exceptions

If an ISR raises an exception it will not propagate to the main loop. The interrupt will be disabled unless the exception
is handled by the ISR code.

2.3.4 General Issues

This is merely a brief introduction to the subject of real time programming. Beginners should note that design errors in
real time programs can lead to faults which are particularly hard to diagnose. This is because they can occur rarely and
at intervals which are essentially random. It is crucial to get the initial design right and to anticipate issues before they
arise. Both interrupt handlers and the main program need to be designed with an appreciation of the following issues.

Interrupt Handler Design

As mentioned above, ISR’s should be designed to be as simple as possible. They should always return in a short,
predictable period of time. This is important because when the ISR is running, the main loop is not: inevitably the
main loop experiences pauses in its execution at random points in the code. Such pauses can be a source of hard to
diagnose bugs particularly if their duration is long or variable. In order to understand the implications of ISR run time,
a basic grasp of interrupt priorities is required.

Interrupts are organised according to a priority scheme. ISR code may itself be interrupted by a higher priority interrupt.
This has implications if the two interrupts share data (see Critical Sections below). If such an interrupt occurs it
interposes a delay into the ISR code. If a lower priority interrupt occurs while the ISR is running, it will be delayed
until the ISR is complete: if the delay is too long, the lower priority interrupt may fail. A further issue with slow ISR’s

154 Chapter 2. The MicroPython language

MicroPython Lego RI5 Documentation, Release 1.11

is the case where a second interrupt of the same type occurs during its execution. The second interrupt will be handled
on termination of the first. However if the rate of incoming interrupts consistently exceeds the capacity of the ISR to
service them the outcome will not be a happy one.

Consequently looping constructs should be avoided or minimised. I/O to devices other than to the interrupting device
should normally be avoided: I/O such as disk access, print statements and UART access is relatively slow, and its
duration may vary. A further issue here is that filesystem functions are not reentrant: using filesystem I/O in an ISR
and the main program would be hazardous. Crucially ISR code should not wait on an event. I/O is acceptable if the
code can be guaranteed to return in a predictable period, for example toggling a pin or LED. Accessing the interrupting
device via I2C or SPI may be necessary but the time taken for such accesses should be calculated or measured and its
impact on the application assessed.

There is usually a need to share data between the ISR and the main loop. This may be done either through global
variables or via class or instance variables. Variables are typically integer or boolean types, or integer or byte arrays (a
pre-allocated integer array offers faster access than a list). Where multiple values are modified by the ISR it is necessary
to consider the case where the interrupt occurs at a time when the main program has accessed some, but not all, of the
values. This can lead to inconsistencies.

Consider the following design. An ISR stores incoming data in a bytearray, then adds the number of bytes received to
an integer representing total bytes ready for processing. The main program reads the number of bytes, processes the
bytes, then clears down the number of bytes ready. This will work until an interrupt occurs just after the main program
has read the number of bytes. The ISR puts the added data into the buffer and updates the number received, but the
main program has already read the number, so processes the data originally received. The newly arrived bytes are lost.

There are various ways of avoiding this hazard, the simplest being to use a circular buffer. If it is not possible to use a
structure with inherent thread safety other ways are described below.

Reentrancy

A potential hazard may occur if a function or method is shared between the main program and one or more ISR’s or
between multiple ISR’s. The issue here is that the function may itself be interrupted and a further instance of that
function run. If this is to occur, the function must be designed to be reentrant. How this is done is an advanced topic
beyond the scope of this tutorial.

Critical Sections

An example of a critical section of code is one which accesses more than one variable which can be affected by an ISR.
If the interrupt happens to occur between accesses to the individual variables, their values will be inconsistent. This
is an instance of a hazard known as a race condition: the ISR and the main program loop race to alter the variables.
To avoid inconsistency a means must be employed to ensure that the ISR does not alter the values for the duration
of the critical section. One way to achieve this is to issue pyb.disable_irq() before the start of the section, and
pyb.enable_irq() at the end. Here is an example of this approach:

import pyb, micropython, array
micropython.alloc_emergency_exception_buf(100)

class BoundsException(Exception):
pass

ARRAYSIZE = const(20)
index = 0
data = array.array('i', 0 for x in range(ARRAYSIZE))

def callback1(t):
(continues on next page)

2.3. Writing interrupt handlers 155

MicroPython Lego RI5 Documentation, Release 1.11

(continued from previous page)

global data, index
for x in range(5):

data[index] = pyb.rng() # simulate input
index += 1
if index >= ARRAYSIZE:

raise BoundsException('Array bounds exceeded')

tim4 = pyb.Timer(4, freq=100, callback=callback1)

for loop in range(1000):
if index > 0:

irq_state = pyb.disable_irq() # Start of critical section
for x in range(index):

print(data[x])
index = 0
pyb.enable_irq(irq_state) # End of critical section
print('loop {}'.format(loop))

pyb.delay(1)

tim4.callback(None)

A critical section can comprise a single line of code and a single variable. Consider the following code fragment.

count = 0
def cb(): # An interrupt callback

count +=1
def main():

Code to set up the interrupt callback omitted
while True:

count += 1

This example illustrates a subtle source of bugs. The line count += 1 in the main loop carries a specific race condition
hazard known as a read-modify-write. This is a classic cause of bugs in real time systems. In the main loop MicroPython
reads the value of t.counter, adds 1 to it, and writes it back. On rare occasions the interrupt occurs after the read
and before the write. The interrupt modifies t.counter but its change is overwritten by the main loop when the ISR
returns. In a real system this could lead to rare, unpredictable failures.

As mentioned above, care should be taken if an instance of a Python built in type is modified in the main code and that
instance is accessed in an ISR. The code performing the modification should be regarded as a critical section to ensure
that the instance is in a valid state when the ISR runs.

Particular care needs to be taken if a dataset is shared between different ISR’s. The hazard here is that the higher priority
interrupt may occur when the lower priority one has partially updated the shared data. Dealing with this situation is
an advanced topic beyond the scope of this introduction other than to note that mutex objects described below can
sometimes be used.

Disabling interrupts for the duration of a critical section is the usual and simplest way to proceed, but it disables all
interrupts rather than merely the one with the potential to cause problems. It is generally undesirable to disable an
interrupt for long. In the case of timer interrupts it introduces variability to the time when a callback occurs. In the
case of device interrupts, it can lead to the device being serviced too late with possible loss of data or overrun errors in
the device hardware. Like ISR’s, a critical section in the main code should have a short, predictable duration.

An approach to dealing with critical sections which radically reduces the time for which interrupts are disabled is to
use an object termed a mutex (name derived from the notion of mutual exclusion). The main program locks the mutex
before running the critical section and unlocks it at the end. The ISR tests whether the mutex is locked. If it is, it avoids

156 Chapter 2. The MicroPython language

MicroPython Lego RI5 Documentation, Release 1.11

the critical section and returns. The design challenge is defining what the ISR should do in the event that access to the
critical variables is denied. A simple example of a mutex may be found here. Note that the mutex code does disable
interrupts, but only for the duration of eight machine instructions: the benefit of this approach is that other interrupts
are virtually unaffected.

Interrupts and the REPL

Interrupt handlers, such as those associated with timers, can continue to run after a program terminates. This may
produce unexpected results where you might have expected the object raising the callback to have gone out of scope.
For example on the Pyboard:

def bar():
foo = pyb.Timer(2, freq=4, callback=lambda t: print('.', end=''))

bar()

This continues to run until the timer is explicitly disabled or the board is reset with ctrl D.

2.4 Maximising MicroPython Speed

Contents

• Maximising MicroPython Speed

– Designing for speed

∗ Algorithms

∗ RAM Allocation

∗ Buffers

∗ Floating Point

∗ Arrays

– Identifying the slowest section of code

– MicroPython code improvements

∗ The const() declaration

∗ Caching object references

∗ Controlling garbage collection

– The Native code emitter

– The Viper code emitter

– Accessing hardware directly

This tutorial describes ways of improving the performance of MicroPython code. Optimisations involving other lan-
guages are covered elsewhere, namely the use of modules written in C and the MicroPython inline assembler.

The process of developing high performance code comprises the following stages which should be performed in the
order listed.

2.4. Maximising MicroPython Speed 157

https://github.com/peterhinch/micropython-samples.git

MicroPython Lego RI5 Documentation, Release 1.11

• Design for speed.

• Code and debug.

Optimisation steps:

• Identify the slowest section of code.

• Improve the efficiency of the Python code.

• Use the native code emitter.

• Use the viper code emitter.

• Use hardware-specific optimisations.

2.4.1 Designing for speed

Performance issues should be considered at the outset. This involves taking a view on the sections of code which are
most performance critical and devoting particular attention to their design. The process of optimisation begins when
the code has been tested: if the design is correct at the outset optimisation will be straightforward and may actually be
unnecessary.

Algorithms

The most important aspect of designing any routine for performance is ensuring that the best algorithm is employed.
This is a topic for textbooks rather than for a MicroPython guide but spectacular performance gains can sometimes be
achieved by adopting algorithms known for their efficiency.

RAM Allocation

To design efficient MicroPython code it is necessary to have an understanding of the way the interpreter allocates RAM.
When an object is created or grows in size (for example where an item is appended to a list) the necessary RAM is
allocated from a block known as the heap. This takes a significant amount of time; further it will on occasion trigger a
process known as garbage collection which can take several milliseconds.

Consequently the performance of a function or method can be improved if an object is created once only and not
permitted to grow in size. This implies that the object persists for the duration of its use: typically it will be instantiated
in a class constructor and used in various methods.

This is covered in further detail Controlling garbage collection below.

Buffers

An example of the above is the common case where a buffer is required, such as one used for communication with
a device. A typical driver will create the buffer in the constructor and use it in its I/O methods which will be called
repeatedly.

The MicroPython libraries typically provide support for pre-allocated buffers. For example, objects which support
stream interface (e.g., file or UART) provide read() method which allocates new buffer for read data, but also a
readinto() method to read data into an existing buffer.

158 Chapter 2. The MicroPython language

MicroPython Lego RI5 Documentation, Release 1.11

Floating Point

Some MicroPython ports allocate floating point numbers on heap. Some other ports may lack dedicated floating-point
coprocessor, and perform arithmetic operations on them in “software” at considerably lower speed than on integers.
Where performance is important, use integer operations and restrict the use of floating point to sections of the code
where performance is not paramount. For example, capture ADC readings as integers values to an array in one quick
go, and only then convert them to floating-point numbers for signal processing.

Arrays

Consider the use of the various types of array classes as an alternative to lists. The array module supports various
element types with 8-bit elements supported by Python’s built in bytes and bytearray classes. These data structures
all store elements in contiguous memory locations. Once again to avoid memory allocation in critical code these should
be pre-allocated and passed as arguments or as bound objects.

When passing slices of objects such as bytearray instances, Python creates a copy which involves allocation of the
size proportional to the size of slice. This can be alleviated using a memoryview object. memoryview itself is allocated
on heap, but is a small, fixed-size object, regardless of the size of slice it points too.

ba = bytearray(10000) # big array
func(ba[30:2000]) # a copy is passed, ~2K new allocation
mv = memoryview(ba) # small object is allocated
func(mv[30:2000]) # a pointer to memory is passed

A memoryview can only be applied to objects supporting the buffer protocol - this includes arrays but not lists. Small
caveat is that while memoryview object is live, it also keeps alive the original buffer object. So, a memoryview isn’t
a universal panacea. For instance, in the example above, if you are done with 10K buffer and just need those bytes
30:2000 from it, it may be better to make a slice, and let the 10K buffer go (be ready for garbage collection), instead of
making a long-living memoryview and keeping 10K blocked for GC.

Nonetheless, memoryview is indispensable for advanced preallocated buffer management. readinto() method dis-
cussed above puts data at the beginning of buffer and fills in entire buffer. What if you need to put data in the middle
of existing buffer? Just create a memoryview into the needed section of buffer and pass it to readinto().

2.4.2 Identifying the slowest section of code

This is a process known as profiling and is covered in textbooks and (for standard Python) supported by various software
tools. For the type of smaller embedded application likely to be running on MicroPython platforms the slowest function
or method can usually be established by judicious use of the timing ticks group of functions documented in utime.
Code execution time can be measured in ms, us, or CPU cycles.

The following enables any function or method to be timed by adding an @timed_function decorator:

def timed_function(f, *args, **kwargs):
myname = str(f).split(' ')[1]
def new_func(*args, **kwargs):

t = utime.ticks_us()
result = f(*args, **kwargs)
delta = utime.ticks_diff(utime.ticks_us(), t)
print('Function {} Time = {:6.3f}ms'.format(myname, delta/1000))
return result

return new_func

2.4. Maximising MicroPython Speed 159

MicroPython Lego RI5 Documentation, Release 1.11

2.4.3 MicroPython code improvements

The const() declaration

MicroPython provides a const() declaration. This works in a similar way to #define in C in that when the code is
compiled to bytecode the compiler substitutes the numeric value for the identifier. This avoids a dictionary lookup at
runtime. The argument to const() may be anything which, at compile time, evaluates to an integer e.g. 0x100 or 1
<< 8.

Caching object references

Where a function or method repeatedly accesses objects performance is improved by caching the object in a local
variable:

class foo(object):
def __init__(self):

ba = bytearray(100)
def bar(self, obj_display):

ba_ref = self.ba
fb = obj_display.framebuffer
iterative code using these two objects

This avoids the need repeatedly to look up self.ba and obj_display.framebuffer in the body of the method
bar().

Controlling garbage collection

When memory allocation is required, MicroPython attempts to locate an adequately sized block on the heap. This may
fail, usually because the heap is cluttered with objects which are no longer referenced by code. If a failure occurs, the
process known as garbage collection reclaims the memory used by these redundant objects and the allocation is then
tried again - a process which can take several milliseconds.

There may be benefits in pre-empting this by periodically issuing gc.collect(). Firstly doing a collection before it
is actually required is quicker - typically on the order of 1ms if done frequently. Secondly you can determine the point
in code where this time is used rather than have a longer delay occur at random points, possibly in a speed critical
section. Finally performing collections regularly can reduce fragmentation in the heap. Severe fragmentation can lead
to non-recoverable allocation failures.

2.4.4 The Native code emitter

This causes the MicroPython compiler to emit native CPU opcodes rather than bytecode. It covers the bulk of the
MicroPython functionality, so most functions will require no adaptation (but see below). It is invoked by means of a
function decorator:

@micropython.native
def foo(self, arg):

buf = self.linebuf # Cached object
code

There are certain limitations in the current implementation of the native code emitter.

• Context managers are not supported (the with statement).

160 Chapter 2. The MicroPython language

MicroPython Lego RI5 Documentation, Release 1.11

• Generators are not supported.

• If raise is used an argument must be supplied.

The trade-off for the improved performance (roughly twices as fast as bytecode) is an increase in compiled code size.

2.4.5 The Viper code emitter

The optimisations discussed above involve standards-compliant Python code. The Viper code emitter is not fully com-
pliant. It supports special Viper native data types in pursuit of performance. Integer processing is non-compliant
because it uses machine words: arithmetic on 32 bit hardware is performed modulo 2**32.

Like the Native emitter Viper produces machine instructions but further optimisations are performed, substantially
increasing performance especially for integer arithmetic and bit manipulations. It is invoked using a decorator:

@micropython.viper
def foo(self, arg: int) -> int:

code

As the above fragment illustrates it is beneficial to use Python type hints to assist the Viper optimiser. Type hints
provide information on the data types of arguments and of the return value; these are a standard Python language
feature formally defined here PEP0484. Viper supports its own set of types namely int, uint (unsigned integer), ptr,
ptr8, ptr16 and ptr32. The ptrX types are discussed below. Currently the uint type serves a single purpose: as a
type hint for a function return value. If such a function returns 0xffffffff Python will interpret the result as 2**32
-1 rather than as -1.

In addition to the restrictions imposed by the native emitter the following constraints apply:

• Functions may have up to four arguments.

• Default argument values are not permitted.

• Floating point may be used but is not optimised.

Viper provides pointer types to assist the optimiser. These comprise

• ptr Pointer to an object.

• ptr8 Points to a byte.

• ptr16 Points to a 16 bit half-word.

• ptr32 Points to a 32 bit machine word.

The concept of a pointer may be unfamiliar to Python programmers. It has similarities to a Python memoryview object
in that it provides direct access to data stored in memory. Items are accessed using subscript notation, but slices are
not supported: a pointer can return a single item only. Its purpose is to provide fast random access to data stored in
contiguous memory locations - such as data stored in objects which support the buffer protocol, and memory-mapped
peripheral registers in a microcontroller. It should be noted that programming using pointers is hazardous: bounds
checking is not performed and the compiler does nothing to prevent buffer overrun errors.

Typical usage is to cache variables:

@micropython.viper
def foo(self, arg: int) -> int:

buf = ptr8(self.linebuf) # self.linebuf is a bytearray or bytes object
for x in range(20, 30):

bar = buf[x] # Access a data item through the pointer
code omitted

2.4. Maximising MicroPython Speed 161

https://www.python.org/dev/peps/pep-0484/

MicroPython Lego RI5 Documentation, Release 1.11

In this instance the compiler “knows” that buf is the address of an array of bytes; it can emit code to rapidly compute the
address of buf[x] at runtime. Where casts are used to convert objects to Viper native types these should be performed
at the start of the function rather than in critical timing loops as the cast operation can take several microseconds. The
rules for casting are as follows:

• Casting operators are currently: int, bool, uint, ptr, ptr8, ptr16 and ptr32.

• The result of a cast will be a native Viper variable.

• Arguments to a cast can be a Python object or a native Viper variable.

• If argument is a native Viper variable, then cast is a no-op (i.e. costs nothing at runtime) that just changes the
type (e.g. from uint to ptr8) so that you can then store/load using this pointer.

• If the argument is a Python object and the cast is int or uint, then the Python object must be of integral type
and the value of that integral object is returned.

• The argument to a bool cast must be integral type (boolean or integer); when used as a return type the viper
function will return True or False objects.

• If the argument is a Python object and the cast is ptr, ptr, ptr16 or ptr32, then the Python object must either
have the buffer protocol with read-write capabilities (in which case a pointer to the start of the buffer is returned)
or it must be of integral type (in which case the value of that integral object is returned).

The following example illustrates the use of a ptr16 cast to toggle pin X1 n times:

BIT0 = const(1)
@micropython.viper
def toggle_n(n: int):

odr = ptr16(stm.GPIOA + stm.GPIO_ODR)
for _ in range(n):

odr[0] ^= BIT0

A detailed technical description of the three code emitters may be found on Kickstarter here Note 1 and here Note 2

2.4.6 Accessing hardware directly

Note: Code examples in this section are given for the Pyboard. The techniques described however may be applied to
other MicroPython ports too.

This comes into the category of more advanced programming and involves some knowledge of the target MCU. Con-
sider the example of toggling an output pin on the Pyboard. The standard approach would be to write

mypin.value(mypin.value() ^ 1) # mypin was instantiated as an output pin

This involves the overhead of two calls to the Pin instance’s value() method. This overhead can be eliminated by
performing a read/write to the relevant bit of the chip’s GPIO port output data register (odr). To facilitate this the stm
module provides a set of constants providing the addresses of the relevant registers. A fast toggle of pin P4 (CPU pin
A14) - corresponding to the green LED - can be performed as follows:

import machine
import stm

BIT14 = const(1 << 14)
machine.mem16[stm.GPIOA + stm.GPIO_ODR] ^= BIT14

162 Chapter 2. The MicroPython language

https://www.kickstarter.com/projects/214379695/micro-python-python-for-microcontrollers/posts/664832
https://www.kickstarter.com/projects/214379695/micro-python-python-for-microcontrollers/posts/665145

MicroPython Lego RI5 Documentation, Release 1.11

2.5 MicroPython on Microcontrollers

MicroPython is designed to be capable of running on microcontrollers. These have hardware limitations which may
be unfamiliar to programmers more familiar with conventional computers. In particular the amount of RAM and
nonvolatile “disk” (flash memory) storage is limited. This tutorial offers ways to make the most of the limited resources.
Because MicroPython runs on controllers based on a variety of architectures, the methods presented are generic: in
some cases it will be necessary to obtain detailed information from platform specific documentation.

2.5.1 Flash Memory

On the Pyboard the simple way to address the limited capacity is to fit a micro SD card. In some cases this is impractical,
either because the device does not have an SD card slot or for reasons of cost or power consumption; hence the on-chip
flash must be used. The firmware including the MicroPython subsystem is stored in the onboard flash. The remaining
capacity is available for use. For reasons connected with the physical architecture of the flash memory part of this
capacity may be inaccessible as a filesystem. In such cases this space may be employed by incorporating user modules
into a firmware build which is then flashed to the device.

There are two ways to achieve this: frozen modules and frozen bytecode. Frozen modules store the Python source with
the firmware. Frozen bytecode uses the cross compiler to convert the source to bytecode which is then stored with the
firmware. In either case the module may be accessed with an import statement:

import mymodule

The procedure for producing frozen modules and bytecode is platform dependent; instructions for building the firmware
can be found in the README files in the relevant part of the source tree.

In general terms the steps are as follows:

• Clone the MicroPython repository.

• Acquire the (platform specific) toolchain to build the firmware.

• Build the cross compiler.

• Place the modules to be frozen in a specified directory (dependent on whether the module is to be frozen as
source or as bytecode).

• Build the firmware. A specific command may be required to build frozen code of either type - see the platform
documentation.

• Flash the firmware to the device.

2.5.2 RAM

When reducing RAM usage there are two phases to consider: compilation and execution. In addition to memory
consumption, there is also an issue known as heap fragmentation. In general terms it is best to minimise the repeated
creation and destruction of objects. The reason for this is covered in the section covering the heap.

2.5. MicroPython on Microcontrollers 163

https://github.com/micropython/micropython

MicroPython Lego RI5 Documentation, Release 1.11

Compilation Phase

When a module is imported, MicroPython compiles the code to bytecode which is then executed by the MicroPython
virtual machine (VM). The bytecode is stored in RAM. The compiler itself requires RAM, but this becomes available
for use when the compilation has completed.

If a number of modules have already been imported the situation can arise where there is insufficient RAM to run the
compiler. In this case the import statement will produce a memory exception.

If a module instantiates global objects on import it will consume RAM at the time of import, which is then unavailable
for the compiler to use on subsequent imports. In general it is best to avoid code which runs on import; a better approach
is to have initialisation code which is run by the application after all modules have been imported. This maximises the
RAM available to the compiler.

If RAM is still insufficient to compile all modules one solution is to precompile modules. MicroPython has a cross
compiler capable of compiling Python modules to bytecode (see the README in the mpy-cross directory). The result-
ing bytecode file has a .mpy extension; it may be copied to the filesystem and imported in the usual way. Alternatively
some or all modules may be implemented as frozen bytecode: on most platforms this saves even more RAM as the
bytecode is run directly from flash rather than being stored in RAM.

Execution Phase

There are a number of coding techniques for reducing RAM usage.

Constants
MicroPython provides a const keyword which may be used as follows:

from micropython import const
ROWS = const(33)
_COLS = const(0x10)
a = ROWS
b = _COLS

In both instances where the constant is assigned to a variable the compiler will avoid coding a lookup to the name of
the constant by substituting its literal value. This saves bytecode and hence RAM. However the ROWS value will occupy
at least two machine words, one each for the key and value in the globals dictionary. The presence in the dictionary is
necessary because another module might import or use it. This RAM can be saved by prepending the name with an
underscore as in _COLS: this symbol is not visible outside the module so will not occupy RAM.

The argument to const() may be anything which, at compile time, evaluates to an integer e.g. 0x100 or 1 << 8. It
can even include other const symbols that have already been defined, e.g. 1 << BIT.

Constant data structures
Where there is a substantial volume of constant data and the platform supports execution from Flash, RAM may be
saved as follows. The data should be located in Python modules and frozen as bytecode. The data must be defined as
bytes objects. The compiler ‘knows’ that bytes objects are immutable and ensures that the objects remain in flash
memory rather than being copied to RAM. The ustruct module can assist in converting between bytes types and
other Python built-in types.

When considering the implications of frozen bytecode, note that in Python strings, floats, bytes, integers and complex
numbers are immutable. Accordingly these will be frozen into flash. Thus, in the line

mystring = "The quick brown fox"

164 Chapter 2. The MicroPython language

MicroPython Lego RI5 Documentation, Release 1.11

the actual string “The quick brown fox” will reside in flash. At runtime a reference to the string is assigned to the
variable mystring. The reference occupies a single machine word. In principle a long integer could be used to store
constant data:

bar = 0xDEADBEEF0000DEADBEEF

As in the string example, at runtime a reference to the arbitrarily large integer is assigned to the variable bar. That
reference occupies a single machine word.

It might be expected that tuples of integers could be employed for the purpose of storing constant data with minimal
RAM use. With the current compiler this is ineffective (the code works, but RAM is not saved).

foo = (1, 2, 3, 4, 5, 6, 100000)

At runtime the tuple will be located in RAM. This may be subject to future improvement.

Needless object creation
There are a number of situations where objects may unwittingly be created and destroyed. This can reduce the usability
of RAM through fragmentation. The following sections discuss instances of this.

String concatenation
Consider the following code fragments which aim to produce constant strings:

var = "foo" + "bar"
var1 = "foo" "bar"
var2 = """\
foo\
bar"""

Each produces the same outcome, however the first needlessly creates two string objects at runtime, allocates more
RAM for concatenation before producing the third. The others perform the concatenation at compile time which is
more efficient, reducing fragmentation.

Where strings must be dynamically created before being fed to a stream such as a file it will save RAM if this is done
in a piecemeal fashion. Rather than creating a large string object, create a substring and feed it to the stream before
dealing with the next.

The best way to create dynamic strings is by means of the string format() method:

var = "Temperature {:5.2f} Pressure {:06d}\n".format(temp, press)

Buffers
When accessing devices such as instances of UART, I2C and SPI interfaces, using pre-allocated buffers avoids the
creation of needless objects. Consider these two loops:

while True:
var = spi.read(100)
process data

buf = bytearray(100)
while True:

spi.readinto(buf)
process data in buf

The first creates a buffer on each pass whereas the second re-uses a pre-allocated buffer; this is both faster and more
efficient in terms of memory fragmentation.

2.5. MicroPython on Microcontrollers 165

MicroPython Lego RI5 Documentation, Release 1.11

Bytes are smaller than ints
On most platforms an integer consumes four bytes. Consider the two calls to the function foo():

def foo(bar):
for x in bar:

print(x)
foo((1, 2, 0xff))
foo(b'\1\2\xff')

In the first call a tuple of integers is created in RAM. The second efficiently creates a bytes object consuming the
minimum amount of RAM. If the module were frozen as bytecode, the bytes object would reside in flash.

Strings Versus Bytes
Python3 introduced Unicode support. This introduced a distinction between a string and an array of bytes. MicroPython
ensures that Unicode strings take no additional space so long as all characters in the string are ASCII (i.e. have a value
< 126). If values in the full 8-bit range are required bytes and bytearray objects can be used to ensure that no
additional space will be required. Note that most string methods (e.g. str.strip()) apply also to bytes instances
so the process of eliminating Unicode can be painless.

s = 'the quick brown fox' # A string instance
b = b'the quick brown fox' # A bytes instance

Where it is necessary to convert between strings and bytes the str.encode() and the bytes.decode() methods
can be used. Note that both strings and bytes are immutable. Any operation which takes as input such an object and
produces another implies at least one RAM allocation to produce the result. In the second line below a new bytes object
is allocated. This would also occur if foo were a string.

foo = b' empty whitespace'
foo = foo.lstrip()

Runtime compiler execution
The Python funcitons eval and exec invoke the compiler at runtime, which requires significant amounts of RAM.
Note that the pickle library from micropython-lib employs exec. It may be more RAM efficient to use the ujson
library for object serialisation.

Storing strings in flash
Python strings are immutable hence have the potential to be stored in read only memory. The compiler can place in
flash strings defined in Python code. As with frozen modules it is necessary to have a copy of the source tree on the PC
and the toolchain to build the firmware. The procedure will work even if the modules have not been fully debugged, so
long as they can be imported and run.

After importing the modules, execute:

micropython.qstr_info(1)

Then copy and paste all the Q(xxx) lines into a text editor. Check for and remove lines which are obviously invalid.
Open the file qstrdefsport.h which will be found in ports/stm32 (or the equivalent directory for the architecture in use).
Copy and paste the corrected lines at the end of the file. Save the file, rebuild and flash the firmware. The outcome can
be checked by importing the modules and again issuing:

micropython.qstr_info(1)

The Q(xxx) lines should be gone.

166 Chapter 2. The MicroPython language

https://docs.python.org/3.5/library/stdtypes.html#str.strip
https://docs.python.org/3.5/library/stdtypes.html#str.encode
https://docs.python.org/3.5/library/stdtypes.html#bytes.decode

MicroPython Lego RI5 Documentation, Release 1.11

2.5.3 The Heap

When a running program instantiates an object the necessary RAM is allocated from a fixed size pool known as the
heap. When the object goes out of scope (in other words becomes inaccessible to code) the redundant object is known
as “garbage”. A process known as “garbage collection” (GC) reclaims that memory, returning it to the free heap. This
process runs automatically, however it can be invoked directly by issuing gc.collect().

The discourse on this is somewhat involved. For a ‘quick fix’ issue the following periodically:

gc.collect()
gc.threshold(gc.mem_free() // 4 + gc.mem_alloc())

Fragmentation

Say a program creates an object foo, then an object bar. Subsequently foo goes out of scope but bar remains. The
RAM used by foo will be reclaimed by GC. However if bar was allocated to a higher address, the RAM reclaimed
from foo will only be of use for objects no bigger than foo. In a complex or long running program the heap can
become fragmented: despite there being a substantial amount of RAM available, there is insufficient contiguous space
to allocate a particular object, and the program fails with a memory error.

The techniques outlined above aim to minimise this. Where large permanent buffers or other objects are required it is
best to instantiate these early in the process of program execution before fragmentation can occur. Further improvements
may be made by monitoring the state of the heap and by controlling GC; these are outlined below.

Reporting

A number of library functions are available to report on memory allocation and to control GC. These are to be found in
the gc and micropython modules. The following example may be pasted at the REPL (ctrl e to enter paste mode,
ctrl d to run it).

import gc
import micropython
gc.collect()
micropython.mem_info()
print('-----------------------------')
print('Initial free: {} allocated: {}'.format(gc.mem_free(), gc.mem_alloc()))
def func():

a = bytearray(10000)
gc.collect()
print('Func definition: {} allocated: {}'.format(gc.mem_free(), gc.mem_alloc()))
func()
print('Func run free: {} allocated: {}'.format(gc.mem_free(), gc.mem_alloc()))
gc.collect()
print('Garbage collect free: {} allocated: {}'.format(gc.mem_free(), gc.mem_alloc()))
print('-----------------------------')
micropython.mem_info(1)

Methods employed above:

• gc.collect() Force a garbage collection. See footnote.

• micropython.mem_info() Print a summary of RAM utilisation.

• gc.mem_free() Return the free heap size in bytes.

2.5. MicroPython on Microcontrollers 167

MicroPython Lego RI5 Documentation, Release 1.11

• gc.mem_alloc() Return the number of bytes currently allocated.

• micropython.mem_info(1) Print a table of heap utilisation (detailed below).

The numbers produced are dependent on the platform, but it can be seen that declaring the function uses a small amount
of RAM in the form of bytecode emitted by the compiler (the RAM used by the compiler has been reclaimed). Running
the function uses over 10KiB, but on return a is garbage because it is out of scope and cannot be referenced. The final
gc.collect() recovers that memory.

The final output produced by micropython.mem_info(1) will vary in detail but may be interpreted as follows:

Symbol Meaning
. free block
h head block
= tail block
m marked head block
T tuple
L list
D dict
F float
B byte code
M module

Each letter represents a single block of memory, a block being 16 bytes. So each line of the heap dump represents
0x400 bytes or 1KiB of RAM.

Control of Garbage Collection

A GC can be demanded at any time by issuing gc.collect(). It is advantageous to do this at intervals, firstly to
pre-empt fragmentation and secondly for performance. A GC can take several milliseconds but is quicker when there
is little work to do (about 1ms on the Pyboard). An explicit call can minimise that delay while ensuring it occurs at
points in the program when it is acceptable.

Automatic GC is provoked under the following circumstances. When an attempt at allocation fails, a GC is performed
and the allocation re-tried. Only if this fails is an exception raised. Secondly an automatic GC will be triggered if the
amount of free RAM falls below a threshold. This threshold can be adapted as execution progresses:

gc.collect()
gc.threshold(gc.mem_free() // 4 + gc.mem_alloc())

This will provoke a GC when more than 25% of the currently free heap becomes occupied.

In general modules should instantiate data objects at runtime using constructors or other initialisation functions. The
reason is that if this occurs on initialisation the compiler may be starved of RAM when subsequent modules are im-
ported. If modules do instantiate data on import then gc.collect() issued after the import will ameliorate the prob-
lem.

168 Chapter 2. The MicroPython language

MicroPython Lego RI5 Documentation, Release 1.11

2.5.4 String Operations

MicroPython handles strings in an efficient manner and understanding this can help in designing applications to run
on microcontrollers. When a module is compiled, strings which occur multiple times are stored once only, a process
known as string interning. In MicroPython an interned string is known as a qstr. In a module imported normally that
single instance will be located in RAM, but as described above, in modules frozen as bytecode it will be located in
flash.

String comparisons are also performed efficiently using hashing rather than character by character. The penalty for
using strings rather than integers may hence be small both in terms of performance and RAM usage - a fact which may
come as a surprise to C programmers.

2.5.5 Postscript

MicroPython passes, returns and (by default) copies objects by reference. A reference occupies a single machine word
so these processes are efficient in RAM usage and speed.

Where variables are required whose size is neither a byte nor a machine word there are standard libraries which can
assist in storing these efficiently and in performing conversions. See the array, ustruct and uctypes modules.

Footnote: gc.collect() return value

On Unix and Windows platforms the gc.collect() method returns an integer which signifies the number of distinct
memory regions that were reclaimed in the collection (more precisely, the number of heads that were turned into frees).
For efficiency reasons bare metal ports do not return this value.

2.6 Distribution packages, package management, and deploying ap-
plications

Just as the “big” Python, MicroPython supports creation of “third party” packages, distributing them, and easily in-
stalling them in each user’s environment. This chapter discusses how these actions are achieved. Some familiarity with
Python packaging is recommended.

2.6.1 Overview

Steps below represent a high-level workflow when creating and consuming packages:

1. Python modules and packages are turned into distribution package archives, and published at the Python Package
Index (PyPI).

2. upip package manager can be used to install a distribution package on a MicroPython port with networking
capabilities (for example, on the Unix port).

3. For ports without networking capabilities, an “installation image” can be prepared on the Unix port, and trans-
ferred to a device by suitable means.

4. For low-memory ports, the installation image can be frozen as the bytecode into MicroPython executable, thus
minimizing the memory storage overheads.

The sections below describe this process in details.

2.6. Distribution packages, package management, and deploying applications 169

MicroPython Lego RI5 Documentation, Release 1.11

2.6.2 Distribution packages

Python modules and packages can be packaged into archives suitable for transfer between systems, storing at the well-
known location (PyPI), and downloading on demand for deployment. These archives are known as distribution pack-
ages (to differentiate them from Python packages (means to organize Python source code)).

The MicroPython distribution package format is a well-known tar.gz format, with some adaptations however. The Gzip
compressor, used as an external wrapper for TAR archives, by default uses 32KB dictionary size, which means that to
uncompress a compressed stream, 32KB of contguous memory needs to be allocated. This requirement may be not
satisfiable on low-memory devices, which may have total memory available less than that amount, and even if not, a
contiguous block like that may be hard to allocate due to memory fragmentation. To accommodate these constraints,
MicroPython distribution packages use Gzip compression with the dictionary size of 4K, which should be a suitable
compromise with still achieving some compression while being able to uncompressed even by the smallest devices.

Besides the small compression dictionary size, MicroPython distribution packages also have other optimizations, like
removing any files from the archive which aren’t used by the installation process. In particular, upip package manager
doesn’t execute setup.py during installation (see below), and thus that file is not included in the archive.

At the same time, these optimizations make MicroPython distribution packages not compatible with CPython’s package
manager, pip. This isn’t considered a big problem, because:

1. Packages can be installed with upip, and then can be used with CPython (if they are compatible with it).

2. In the other direction, majority of CPython packages would be incompatible with MicroPython by various rea-
sons, first of all, the reliance on features not implemented by MicroPython.

Summing up, the MicroPython distribution package archives are highly optimized for MicroPython’s target environ-
ments, which are highly resource constrained devices.

2.6.3 upip package manager

MicroPython distribution packages are intended to be installed using the upip package manager. upip is a Python
application which is usually distributed (as frozen bytecode) with network-enabled MicroPython ports. At the very
least, upip is available in the MicroPython Unix port.

On any MicroPython port providing upip, it can be accessed as following:

import upip
upip.help()
upip.install(package_or_package_list, [path])

Where package_or_package_list is the name of a distribution package to install, or a list of such names to install
multiple packages. Optional path parameter specifies filesystem location to install under and defaults to the standard
library location (see below).

An example of installing a specific package and then using it:

>>> import upip
>>> upip.install("micropython-pystone_lowmem")
[...]
>>> import pystone_lowmem
>>> pystone_lowmem.main()

Note that the name of Python package and the name of distribution package for it in general don’t have to match, and
oftentimes they don’t. This is because PyPI provides a central package repository for all different Python implementa-
tions and versions, and thus distribution package names may need to be namespaced for a particular implementation.

170 Chapter 2. The MicroPython language

MicroPython Lego RI5 Documentation, Release 1.11

For example, all packages from micropython-lib follow this naming convention: for a Python module or package
named foo, the distribution package name is micropython-foo.

For the ports which run MicroPython executable from the OS command prompts (like the Unix port), upip can be (and
indeed, usually is) run from the command line instead of MicroPython’s own REPL. The commands which corresponds
to the example above are:

micropython -m upip -h
micropython -m upip install [-p <path>] <packages>...
micropython -m upip install micropython-pystone_lowmem

[TODO: Describe installation path.]

2.6.4 Cross-installing packages

For MicroPython ports without native networking capabilities, the recommend process is “cross-installing” them
into a “directory image” using the MicroPython Unix port, and then transferring this image to a device by suitable
means.

Installing to a directory image involves using -p switch to upip:

micropython -m upip install -p install_dir micropython-pystone_lowmem

After this command, the package content (and contents of every depenency packages) will be available in the
install_dir/ subdirectory. You would need to transfer contents of this directory (without the install_dir/ prefix)
to the device, at the suitable location, where it can be found by the Python import statement (see discussion of the
upip installation path above).

2.6.5 Cross-installing packages with freezing

For the low-memory MicroPython ports, the process described in the previous section does not provide the most
efficient resource usage,because the packages are installed in the source form, so need to be compiled to the bytecome
on each import. This compilation requires RAM, and the resulting bytecode is also stored in RAM, reducing its amount
available for storing application data. Moreover, the process above requires presence of the filesystem on a device, and
the most resource-constrained devices may not even have it.

The bytecode freezing is a process which resolves all the issues mentioned above:

• The source code is pre-compiled into bytecode and store as such.

• The bytecode is stored in ROM, not RAM.

• Filesystem is not required for frozen packages.

Using frozen bytecode requires building the executable (firmware) for a given MicroPython port from the C source
code. Consequently, the process is:

1. Follow the instructions for a particular port on setting up a toolchain and building the port. For example, for
ESP8266 port, study instructions in ports/esp8266/README.md and follow them. Make sure you can build
the port and deploy the resulting executable/firmware successfully before proceeding to the next steps.

2. Build MicroPython Unix port and make sure it is in your PATH and you can execute micropython.

3. Change to port’s directory (e.g. ports/esp8266/ for ESP8266).

4. Run make clean-frozen. This step cleans up any previous modules which were installed for freezing (conse-
quently, you need to skip this step to add additional modules, instead of starting from scratch).

5. Run micropython -m upip install -p modules <packages>... to install packages you want to freeze.

2.6. Distribution packages, package management, and deploying applications 171

MicroPython Lego RI5 Documentation, Release 1.11

6. Run make clean.

7. Run make.

After this, you should have the executable/firmware with modules as the bytecode inside, which you can deploy the
usual way.

Few notes:

1. Step 5 in the sequence above assumes that the distribution package is available from PyPI. If that is not the case,
you would need to copy Python source files manually to modules/ subdirectory of the port port directory. (Note
that upip does not support installing from e.g. version control repositories).

2. The firmware for baremetal devices usually has size restrictions, so adding too many frozen modules may over-
flow it. Usually, you would get a linking error if this happens. However, in some cases, an image may be
produced, which is not runnable on a device. Such cases are in general bugs, and should be reported and fur-
ther investigated. If you face such a situation, as an initial step, you may want to decrease the amount of frozen
modules included.

2.6.6 Creating distribution packages

Distribution packages for MicroPython are created in the same manner as for CPython or any other Python imple-
mentation, see references at the end of chapter. Setuptools (instead of distutils) should be used, because distutils do
not support dependencies and other features. “Source distribution” (sdist) format is used for packaging. The post-
processing discussed above, (and pre-processing discussed in the following section) is achieved by using custom sdist
command for setuptools. Thus, packaging steps remain the same as for the standard setuptools, the user just needs to
override sdist command implementation by passing the appropriate argument to setup() call:

from setuptools import setup
import sdist_upip

setup(
...,
cmdclass={'sdist': sdist_upip.sdist}

)

The sdist_upip.py module as referenced above can be found in micropython-lib: https://github.com/micropython/
micropython-lib/blob/master/sdist_upip.py

2.6.7 Application resources

A complete application, besides the source code, oftentimes also consists of data files, e.g. web page templates, game
images, etc. It’s clear how to deal with those when application is installed manually - you just put those data files in
the filesystem at some location and use the normal file access functions.

The situation is different when deploying applications from packages - this is more advanced, streamlined and flexible
way, but also requires more advanced approach to accessing data files. This approach is treating the data files as
“resources”, and abstracting away access to them.

Python supports resource access using its “setuptools” library, using pkg_resources module. MicroPython, fol-
lowing its usual approach, implements subset of the functionality of that module, specifically pkg_resources.
resource_stream(package, resource) function. The idea is that an application calls this function, passing a
resource identifier, which is a relative path to data file within the specified package (usually top-level application pack-
age). It returns a stream object which can be used to access resource contents. Thus, the resource_stream() emulates
interface of the standard open() function.

172 Chapter 2. The MicroPython language

https://github.com/micropython/micropython-lib/blob/master/sdist_upip.py
https://github.com/micropython/micropython-lib/blob/master/sdist_upip.py

MicroPython Lego RI5 Documentation, Release 1.11

Implementation-wise, resource_stream() uses file operations underlyingly, if distribution package is install in the
filesystem. However, it also supports functioning without the underlying filesystem, e.g. if the package is frozen as the
bytecode. This however requires an extra intermediate step when packaging application - creation of “Python resource
module”.

The idea of this module is to convert binary data to a Python bytes object, and put it into the dictionary, indexed by
the resource name. This conversion is done automatically using overridden sdist command described in the previous
section.

Let’s trace the complete process using the following example. Suppose your application has the following structure:

my_app/
__main__.py
utils.py
data/

page.html
image.png

__main__.py and utils.py should access resources using the following calls:

import pkg_resources

pkg_resources.resource_stream(__name__, "data/page.html")
pkg_resources.resource_stream(__name__, "data/image.png")

You can develop and debug using the MicroPython Unix port as usual. When time comes to make a distribution
package out of it, just use overridden “sdist” command from sdist_upip.py module as described in the previous section.

This will create a Python resource module named R.py, based on the files declared in MANIFEST or MANIFEST.in files
(any non-.py file will be considered a resource and added to R.py) - before proceeding with the normal packaging
steps.

Prepared like this, your application will work both when deployed to filesystem and as frozen bytecode.

If you would like to debug R.py creation, you can run:

python3 setup.py sdist --manifest-only

Alternatively, you can use tools/mpy_bin2res.py script from the MicroPython distribution, in which can you will need
to pass paths to all resource files:

mpy_bin2res.py data/page.html data/image.png

2.6.8 References

• Python Packaging User Guide: https://packaging.python.org/

• Setuptools documentation: https://setuptools.readthedocs.io/

• Distutils documentation: https://docs.python.org/3/library/distutils.html

2.6. Distribution packages, package management, and deploying applications 173

https://packaging.python.org/
https://setuptools.readthedocs.io/
https://docs.python.org/3/library/distutils.html

MicroPython Lego RI5 Documentation, Release 1.11

2.7 Inline Assembler for Thumb2 architectures

(The Technic Hub uses an ARM Cortex-M4 processor which uses Thumb2 instructions, so this section of the Mi-
cropython docs has been left in, but it’s left as an exercise for the reader how to actually get started doing assembler
programming on the Hub!)

This document assumes some familiarity with assembly language programming and should be read after studying a
Thumb2 tutorial like the Pyboard Assembler Tutorial in the main Micropython docs. For a detailed description of the
instruction set consult the Architecture Reference Manual detailed below. The inline assembler supports a subset of the
ARM Thumb-2 instruction set described here. The syntax tries to be as close as possible to that defined in the above
ARM manual, converted to Python function calls.

Instructions operate on 32 bit signed integer data except where stated otherwise. Most supported instructions operate
on registers R0-R7 only: where R8-R15 are supported this is stated. Registers R8-R12 must be restored to their initial
value before return from a function. Registers R13-R15 constitute the Link Register, Stack Pointer and Program Counter
respectively.

2.7.1 Document conventions

Where possible the behaviour of each instruction is described in Python, for example

• add(Rd, Rn, Rm) Rd = Rn + Rm

This enables the effect of instructions to be demonstrated in Python. In certain case this is impossible because Python
doesn’t support concepts such as indirection. The pseudocode employed in such cases is described on the relevant page.

2.7.2 Instruction Categories

The following sections details the subset of the ARM Thumb-2 instruction set supported by MicroPython.

Register move instructions

Document conventions

Notation: Rd, Rn denote ARM registers R0-R15. immN denotes an immediate value having a width of N bits. These
instructions affect the condition flags.

Register moves

Where immediate values are used, these are zero-extended to 32 bits. Thus mov(R0, 0xff) will set R0 to 255.

• mov(Rd, imm8) Rd = imm8

• mov(Rd, Rn) Rd = Rn

• movw(Rd, imm16) Rd = imm16

• movt(Rd, imm16) Rd = (Rd & 0xffff) | (imm16 << 16)

movt writes an immediate value to the top halfword of the destination register. It does not affect the contents of the
bottom halfword.

• movwt(Rd, imm32) Rd = imm32

174 Chapter 2. The MicroPython language

MicroPython Lego RI5 Documentation, Release 1.11

movwt is a pseudo-instruction: the MicroPython assembler emits a movw followed by a movt to move a 32-bit value
into Rd.

Load register from memory

Document conventions

Notation: Rt, Rn denote ARM registers R0-R7 except where stated. immN represents an immediate value having a
width of N bits hence imm5 is constrained to the range 0-31. [Rn + immN] is the contents of the memory address
obtained by adding Rn and the offset immN. Offsets are measured in bytes. These instructions affect the condition flags.

Register Load

• ldr(Rt, [Rn, imm7]) Rt = [Rn + imm7] Load a 32 bit word

• ldrb(Rt, [Rn, imm5]) Rt = [Rn + imm5] Load a byte

• ldrh(Rt, [Rn, imm6]) Rt = [Rn + imm6] Load a 16 bit half word

Where a byte or half word is loaded, it is zero-extended to 32 bits.

The specified immediate offsets are measured in bytes. Hence in the case of ldr the 7 bit value enables 32 bit word
aligned values to be accessed with a maximum offset of 31 words. In the case of ldrh the 6 bit value enables 16 bit
half-word aligned values to be accessed with a maximum offset of 31 half-words.

Store register to memory

Document conventions

Notation: Rt, Rn denote ARM registers R0-R7 except where stated. immN represents an immediate value having
a width of N bits hence imm5 is constrained to the range 0-31. [Rn + imm5] is the contents of the memory address
obtained by adding Rn and the offset imm5. Offsets are measured in bytes. These instructions do not affect the condition
flags.

Register Store

• str(Rt, [Rn, imm7]) [Rn + imm7] = Rt Store a 32 bit word

• strb(Rt, [Rn, imm5]) [Rn + imm5] = Rt Store a byte (b0-b7)

• strh(Rt, [Rn, imm6]) [Rn + imm6] = Rt Store a 16 bit half word (b0-b15)

The specified immediate offsets are measured in bytes. Hence in the case of str the 7 bit value enables 32 bit word
aligned values to be accessed with a maximum offset of 31 words. In the case of strh the 6 bit value enables 16 bit
half-word aligned values to be accessed with a maximum offset of 31 half-words.

2.7. Inline Assembler for Thumb2 architectures 175

MicroPython Lego RI5 Documentation, Release 1.11

Logical & Bitwise instructions

Document conventions

Notation: Rd, Rn denote ARM registers R0-R7 except in the case of the special instructions where R0-R15 may be
used. Rn<a-b> denotes an ARM register whose contents must lie in range a <= contents <= b. In the case of
instructions with two register arguments, it is permissible for them to be identical. For example the following will zero
R0 (Python R0 ^= R0) regardless of its initial contents.

• eor(r0, r0)

These instructions affect the condition flags except where stated.

Logical instructions

• and_(Rd, Rn) Rd &= Rn

• orr(Rd, Rn) Rd |= Rn

• eor(Rd, Rn) Rd ^= Rn

• mvn(Rd, Rn) Rd = Rn ^ 0xffffffff i.e. Rd = 1’s complement of Rn

• bic(Rd, Rn) Rd &= ~Rn bit clear Rd using mask in Rn

Note the use of “and_” instead of “and”, because “and” is a reserved keyword in Python.

Shift and rotation instructions

• lsl(Rd, Rn<0-31>) Rd <<= Rn

• lsr(Rd, Rn<1-32>) Rd = (Rd & 0xffffffff) >> Rn Logical shift right

• asr(Rd, Rn<1-32>) Rd >>= Rn arithmetic shift right

• ror(Rd, Rn<1-31>) Rd = rotate_right(Rd, Rn) Rd is rotated right Rn bits.

A rotation by (for example) three bits works as follows. If Rd initially contains bits b31 b30..b0 after rotation it will
contain b2 b1 b0 b31 b30..b3

Special instructions

Condition codes are unaffected by these instructions.

• clz(Rd, Rn) Rd = count_leading_zeros(Rn)

count_leading_zeros(Rn) returns the number of binary zero bits before the first binary one bit in Rn.

• rbit(Rd, Rn) Rd = bit_reverse(Rn)

bit_reverse(Rn) returns the bit-reversed contents of Rn. If Rn contains bits b31 b30..b0 Rd will be set to b0 b1
b2..b31

Trailing zeros may be counted by performing a bit reverse prior to executing clz.

176 Chapter 2. The MicroPython language

MicroPython Lego RI5 Documentation, Release 1.11

Arithmetic instructions

Document conventions

Notation: Rd, Rm, Rn denote ARM registers R0-R7. immN denotes an immediate value having a width of N bits e.g.
imm8, imm3. carry denotes the carry condition flag, not(carry) denotes its complement. In the case of instructions
with more than one register argument, it is permissible for some to be identical. For example the following will add
the contents of R0 to itself, placing the result in R0:

• add(r0, r0, r0)

Arithmetic instructions affect the condition flags except where stated.

Addition

• add(Rdn, imm8) Rdn = Rdn + imm8

• add(Rd, Rn, imm3) Rd = Rn + imm3

• add(Rd, Rn, Rm) Rd = Rn +Rm

• adc(Rd, Rn) Rd = Rd + Rn + carry

Subtraction

• sub(Rdn, imm8) Rdn = Rdn - imm8

• sub(Rd, Rn, imm3) Rd = Rn - imm3

• sub(Rd, Rn, Rm) Rd = Rn - Rm

• sbc(Rd, Rn) Rd = Rd - Rn - not(carry)

Negation

• neg(Rd, Rn) Rd = -Rn

Multiplication and division

• mul(Rd, Rn) Rd = Rd * Rn

This produces a 32 bit result with overflow lost. The result may be treated as signed or unsigned according to the
definition of the operands.

• sdiv(Rd, Rn, Rm) Rd = Rn / Rm

• udiv(Rd, Rn, Rm) Rd = Rn / Rm

These functions perform signed and unsigned division respectively. Condition flags are not affected.

2.7. Inline Assembler for Thumb2 architectures 177

MicroPython Lego RI5 Documentation, Release 1.11

Comparison instructions

These perform an arithmetic or logical instruction on two arguments, discarding the result but setting the condition
flags. Typically these are used to test data values without changing them prior to executing a conditional branch.

Document conventions

Notation: Rd, Rm, Rn denote ARM registers R0-R7. imm8 denotes an immediate value having a width of 8 bits.

The Application Program Status Register (APSR)

This contains four bits which are tested by the conditional branch instructions. Typically a conditional branch will test
multiple bits, for example bge(LABEL). The meaning of condition codes can depend on whether the operands of an
arithmetic instruction are viewed as signed or unsigned integers. Thus bhi(LABEL) assumes unsigned numbers were
processed while bgt(LABEL) assumes signed operands.

APSR Bits

• Z (zero)

This is set if the result of an operation is zero or the operands of a comparison are equal.

• N (negative)

Set if the result is negative.

• C (carry)

An addition sets the carry flag when the result overflows out of the MSB, for example adding 0x80000000 and
0x80000000. By the nature of two’s complement arithmetic this behaviour is reversed on subtraction, with a bor-
row indicated by the carry bit being clear. Thus 0x10 - 0x01 is executed as 0x10 + 0xffffffff which will set the carry
bit.

• V (overflow)

The overflow flag is set if the result, viewed as a two’s compliment number, has the “wrong” sign in relation to the
operands. For example adding 1 to 0x7fffffff will set the overflow bit because the result (0x8000000), viewed as a two’s
complement integer, is negative. Note that in this instance the carry bit is not set.

Comparison instructions

These set the APSR (Application Program Status Register) N (negative), Z (zero), C (carry) and V (overflow) flags.

• cmp(Rn, imm8) Rn - imm8

• cmp(Rn, Rm) Rn - Rm

• cmn(Rn, Rm) Rn + Rm

• tst(Rn, Rm) Rn & Rm

178 Chapter 2. The MicroPython language

MicroPython Lego RI5 Documentation, Release 1.11

Conditional execution

The it and ite instructions provide a means of conditionally executing from one to four subsequent instructions
without the need for a label.

• it(<condition>) If then

Execute the next instruction if <condition> is true:

cmp(r0, r1)
it(eq)
mov(r0, 100) # runs if r0 == r1
execution continues here

• ite(<condition>) If then else

If <condtion> is true, execute the next instruction, otherwise execute the subsequent one. Thus:

cmp(r0, r1)
ite(eq)
mov(r0, 100) # runs if r0 == r1
mov(r0, 200) # runs if r0 != r1
execution continues here

This may be extended to control the execution of upto four subsequent instructions: it[x[y[z]]] where x,y,z=t/e; e.g. itt,
itee, itete, ittte, itttt, iteee, etc.

Branch instructions

These cause execution to jump to a target location usually specified by a label (see the label assembler directive). Con-
ditional branches and the it and ite instructions test the Application Program Status Register (APSR) N (negative),
Z (zero), C (carry) and V (overflow) flags to determine whether the branch should be executed.

Most of the exposed assembler instructions (including move operations) set the flags but there are explicit comparison
instructions to enable values to be tested.

Further detail on the meaning of the condition flags is provided in the section describing comparison functions.

Document conventions

Notation: Rm denotes ARM registers R0-R15. LABEL denotes a label defined with the label() assembler directive.
<condition> indicates one of the following condition specifiers:

• eq Equal to (result was zero)

• ne Not equal

• cs Carry set

• cc Carry clear

• mi Minus (negative)

• pl Plus (positive)

• vs Overflow set

• vc Overflow clear

2.7. Inline Assembler for Thumb2 architectures 179

MicroPython Lego RI5 Documentation, Release 1.11

• hi > (unsigned comparison)

• ls <= (unsigned comparison)

• ge >= (signed comparison)

• lt < (signed comparison)

• gt > (signed comparison)

• le <= (signed comparison)

Branch to label

• b(LABEL) Unconditional branch

• beq(LABEL) branch if equal

• bne(LABEL) branch if not equal

• bge(LABEL) branch if greater than or equal

• bgt(LABEL) branch if greater than

• blt(LABEL) branch if less than (<) (signed)

• ble(LABEL) branch if less than or equal to (<=) (signed)

• bcs(LABEL) branch if carry flag is set

• bcc(LABEL) branch if carry flag is clear

• bmi(LABEL) branch if negative

• bpl(LABEL) branch if positive

• bvs(LABEL) branch if overflow flag set

• bvc(LABEL) branch if overflow flag is clear

• bhi(LABEL) branch if higher (unsigned)

• bls(LABEL) branch if lower or equal (unsigned)

Long branches

The code produced by the branch instructions listed above uses a fixed bit width to specify the branch destination,
which is PC relative. Consequently in long programs where the branch instruction is remote from its destination the
assembler will produce a “branch not in range” error. This can be overcome with the “wide” variants such as

• beq_w(LABEL) long branch if equal

Wide branches use 4 bytes to encode the instruction (compared with 2 bytes for standard branch instructions).

180 Chapter 2. The MicroPython language

MicroPython Lego RI5 Documentation, Release 1.11

Subroutines (functions)

When entering a subroutine the processor stores the return address in register r14, also known as the link register (lr).
Return to the instruction after the subroutine call is performed by updating the program counter (r15 or pc) from the
link register, This process is handled by the following instructions.

• bl(LABEL)

Transfer execution to the instruction after LABEL storing the return address in the link register (r14).

• bx(Rm) Branch to address specified by Rm.

Typically bx(lr) is issued to return from a subroutine. For nested subroutines the link register of outer scopes must
be saved (usually on the stack) before performing inner subroutine calls.

Stack push and pop

Document conventions

The push() and pop() instructions accept as their argument a register set containing a subset, or possibly all, of the
general-purpose registers R0-R12 and the link register (lr or R14). As with any Python set the order in which the
registers are specified is immaterial. Thus the in the following example the pop() instruction would restore R1, R7 and
R8 to their contents prior to the push():

• push({r1, r8, r7}) Save three registers on the stack.

• pop({r7, r1, r8}) Restore them

Stack operations

• push({regset}) Push a set of registers onto the stack

• pop({regset}) Restore a set of registers from the stack

Miscellaneous instructions

• nop() pass no operation.

• wfi() Suspend execution in a low power state until an interrupt occurs.

• cpsid(flags) set the Priority Mask Register - disable interrupts.

• cpsie(flags) clear the Priority Mask Register - enable interrupts.

• mrs(Rd, special_reg) Rd = special_reg copy a special register to a general register. The special register
may be IPSR (Interrupt Status Register) or BASEPRI (Base Priority Register). The IPSR provides a means
of determining the exception number of an interrupt being processed. It contains zero if no interrupt is being
processed.

Currently the cpsie() and cpsid() functions are partially implemented. They require but ignore the flags argument
and serve as a means of enabling and disabling interrupts.

2.7. Inline Assembler for Thumb2 architectures 181

MicroPython Lego RI5 Documentation, Release 1.11

Floating Point instructions

These instructions support the use of the ARM floating point coprocessor (on platforms such as the Pyboard which are
equipped with one). The FPU has 32 registers known as s0-s31 each of which can hold a single precision float. Data
can be passed between the FPU registers and the ARM core registers with the vmov instruction.

Note that MicroPython doesn’t support passing floats to assembler functions, nor can you put a float into r0 and expect
a reasonable result. There are two ways to overcome this. The first is to use arrays, and the second is to pass and/or
return integers and convert to and from floats in code.

Document conventions

Notation: Sd, Sm, Sn denote FPU registers, Rd, Rm, Rn denote ARM core registers. The latter can be any ARM
core register although registers R13-R15 are unlikely to be appropriate in this context.

Arithmetic

• vadd(Sd, Sn, Sm) Sd = Sn + Sm

• vsub(Sd, Sn, Sm) Sd = Sn - Sm

• vneg(Sd, Sm) Sd = -Sm

• vmul(Sd, Sn, Sm) Sd = Sn * Sm

• vdiv(Sd, Sn, Sm) Sd = Sn / Sm

• vsqrt(Sd, Sm) Sd = sqrt(Sm)

Registers may be identical: vmul(S0, S0, S0) will execute S0 = S0*S0

Move between ARM core and FPU registers

• vmov(Sd, Rm) Sd = Rm

• vmov(Rd, Sm) Rd = Sm

The FPU has a register known as FPSCR, similar to the ARM core’s APSR, which stores condition codes plus other
data. The following instructions provide access to this.

• vmrs(APSR_nzcv, FPSCR)

Move the floating-point N, Z, C, and V flags to the APSR N, Z, C, and V flags.

This is done after an instruction such as an FPU comparison to enable the condition codes to be tested by the assembler
code. The following is a more general form of the instruction.

• vmrs(Rd, FPSCR) Rd = FPSCR

182 Chapter 2. The MicroPython language

MicroPython Lego RI5 Documentation, Release 1.11

Move between FPU register and memory

• vldr(Sd, [Rn, offset]) Sd = [Rn + offset]

• vstr(Sd, [Rn, offset]) [Rn + offset] = Sd

Where [Rn + offset] denotes the memory address obtained by adding Rn to the offset. This is specified in bytes.
Since each float value occupies a 32 bit word, when accessing arrays of floats the offset must always be a multiple of
four bytes.

Data Comparison

• vcmp(Sd, Sm)

Compare the values in Sd and Sm and set the FPU N, Z, C, and V flags. This would normally be followed by
vmrs(APSR_nzcv, FPSCR) to enable the results to be tested.

Convert between integer and float

• vcvt_f32_s32(Sd, Sm) Sd = float(Sm)

• vcvt_s32_f32(Sd, Sm) Sd = int(Sm)

Assembler Directives

Labels

• label(INNER1)

This defines a label for use in a branch instruction. Thus elsewhere in the code a b(INNER1) will cause execution to
continue with the instruction after the label directive.

Defining inline data

The following assembler directives facilitate embedding data in an assembler code block.

• data(size, d0, d1 .. dn)

The data directive creates n array of data values in memory. The first argument specifies the size in bytes of the
subsequent arguments. Hence the first statement below will cause the assembler to put three bytes (with values 2, 3
and 4) into consecutive memory locations while the second will cause it to emit two four byte words.

data(1, 2, 3, 4)
data(4, 2, 100000)

Data values longer than a single byte are stored in memory in little-endian format.

• align(nBytes)

Align the following instruction to an nBytes value. ARM Thumb-2 instructions must be two byte aligned, hence it’s
advisable to issue align(2) after data directives and prior to any subsequent code. This ensures that the code will
run irrespective of the size of the data array.

2.7. Inline Assembler for Thumb2 architectures 183

MicroPython Lego RI5 Documentation, Release 1.11

2.7.3 Usage examples

These sections provide further code examples and hints on the use of the assembler.

Hints and tips

The following are some examples of the use of the inline assembler and some information on how to work around
its limitations. In this document the term “assembler function” refers to a function declared in Python with the
@micropython.asm_thumb decorator, whereas “subroutine” refers to assembler code called from within an assembler
function.

Code branches and subroutines

It is important to appreciate that labels are local to an assembler function. There is currently no way for a subroutine
defined in one function to be called from another.

To call a subroutine the instruction bl(LABEL) is issued. This transfers control to the instruction following the
label(LABEL) directive and stores the return address in the link register (lr or r14). To return the instruction bx(lr)
is issued which causes execution to continue with the instruction following the subroutine call. This mechanism implies
that, if a subroutine is to call another, it must save the link register prior to the call and restore it before terminating.

The following rather contrived example illustrates a function call. Note that it’s necessary at the start to branch around
all subroutine calls: subroutines end execution with bx(lr) while the outer function simply “drops off the end” in the
style of Python functions.

@micropython.asm_thumb
def quad(r0):

b(START)
label(DOUBLE)
add(r0, r0, r0)
bx(lr)
label(START)
bl(DOUBLE)
bl(DOUBLE)

print(quad(10))

The following code example demonstrates a nested (recursive) call: the classic Fibonacci sequence. Here, prior to a
recursive call, the link register is saved along with other registers which the program logic requires to be preserved.

@micropython.asm_thumb
def fib(r0):

b(START)
label(DOFIB)
push({r1, r2, lr})
cmp(r0, 1)
ble(FIBDONE)
sub(r0, 1)
mov(r2, r0) # r2 = n -1
bl(DOFIB)
mov(r1, r0) # r1 = fib(n -1)
sub(r0, r2, 1)
bl(DOFIB) # r0 = fib(n -2)

(continues on next page)

184 Chapter 2. The MicroPython language

MicroPython Lego RI5 Documentation, Release 1.11

(continued from previous page)

add(r0, r0, r1)
label(FIBDONE)
pop({r1, r2, lr})
bx(lr)
label(START)
bl(DOFIB)

for n in range(10):
print(fib(n))

Argument passing and return

The tutorial details the fact that assembler functions can support from zero to three arguments, which must (if used) be
named r0, r1 and r2. When the code executes the registers will be initialised to those values.

The data types which can be passed in this way are integers and memory addresses. With current firmware all possible
32 bit values may be passed and returned. If the return value may have the most significant bit set a Python type
hint should be employed to enable MicroPython to determine whether the value should be interpreted as a signed or
unsigned integer: types are int or uint.

@micropython.asm_thumb
def uadd(r0, r1) -> uint:

add(r0, r0, r1)

hex(uadd(0x40000000,0x40000000)) will return 0x80000000, demonstrating the passing and return of integers
where bits 30 and 31 differ.

The limitations on the number of arguments and return values can be overcome by means of the array module which
enables any number of values of any type to be accessed.

Multiple arguments

If a Python array of integers is passed as an argument to an assembler function, the function will receive the address of
a contiguous set of integers. Thus multiple arguments can be passed as elements of a single array. Similarly a function
can return multiple values by assigning them to array elements. Assembler functions have no means of determining
the length of an array: this will need to be passed to the function.

This use of arrays can be extended to enable more than three arrays to be used. This is done using indirection: the
uctypes module supports addressof() which will return the address of an array passed as its argument. Thus you
can populate an integer array with the addresses of other arrays:

from uctypes import addressof
@micropython.asm_thumb
def getindirect(r0):

ldr(r0, [r0, 0]) # Address of array loaded from passed array
ldr(r0, [r0, 4]) # Return element 1 of indirect array (24)

def testindirect():
a = array.array('i',[23, 24])
b = array.array('i',[0,0])
b[0] = addressof(a)
print(getindirect(b))

2.7. Inline Assembler for Thumb2 architectures 185

MicroPython Lego RI5 Documentation, Release 1.11

Non-integer data types

These may be handled by means of arrays of the appropriate data type. For example, single precision floating point data
may be processed as follows. This code example takes an array of floats and replaces its contents with their squares.

from array import array

@micropython.asm_thumb
def square(r0, r1):

label(LOOP)
vldr(s0, [r0, 0])
vmul(s0, s0, s0)
vstr(s0, [r0, 0])
add(r0, 4)
sub(r1, 1)
bgt(LOOP)

a = array('f', (x for x in range(10)))
square(a, len(a))
print(a)

The uctypes module supports the use of data structures beyond simple arrays. It enables a Python data structure to be
mapped onto a bytearray instance which may then be passed to the assembler function.

Named constants

Assembler code may be made more readable and maintainable by using named constants rather than littering code with
numbers. This may be achieved thus:

MYDATA = const(33)

@micropython.asm_thumb
def foo():

mov(r0, MYDATA)

The const() construct causes MicroPython to replace the variable name with its value at compile time. If constants are
declared in an outer Python scope they can be shared between multiple assembler functions and with Python code.

Assembler code as class methods

MicroPython passes the address of the object instance as the first argument to class methods. This is normally of little
use to an assembler function. It can be avoided by declaring the function as a static method thus:

class foo:
@staticmethod
@micropython.asm_thumb
def bar(r0):
add(r0, r0, r0)

186 Chapter 2. The MicroPython language

MicroPython Lego RI5 Documentation, Release 1.11

Use of unsupported instructions

These can be coded using the data statement as shown below. While push() and pop() are supported the example
below illustrates the principle. The necessary machine code may be found in the ARM v7-M Architecture Reference
Manual. Note that the first argument of data calls such as

data(2, 0xe92d, 0x0f00) # push r8,r9,r10,r11

indicates that each subsequent argument is a two byte quantity.

Overcoming MicroPython’s integer restriction

The Pyboard chip includes a CRC generator. Its use presents a problem in MicroPython because the returned values
cover the full gamut of 32 bit quantities whereas small integers in MicroPython cannot have differing values in bits 30
and 31. This limitation is overcome with the following code, which uses assembler to put the result into an array and
Python code to coerce the result into an arbitrary precision unsigned integer.

from array import array
import stm

def enable_crc():
stm.mem32[stm.RCC + stm.RCC_AHB1ENR] |= 0x1000

def reset_crc():
stm.mem32[stm.CRC+stm.CRC_CR] = 1

@micropython.asm_thumb
def getval(r0, r1):

movwt(r3, stm.CRC + stm.CRC_DR)
str(r1, [r3, 0])
ldr(r2, [r3, 0])
str(r2, [r0, 0])

def getcrc(value):
a = array('i', [0])
getval(a, value)
return a[0] & 0xffffffff # coerce to arbitrary precision

enable_crc()
reset_crc()
for x in range(20):

print(hex(getcrc(0)))

2.7. Inline Assembler for Thumb2 architectures 187

MicroPython Lego RI5 Documentation, Release 1.11

2.7.4 References

• Assembler Tutorial

• Wiki hints and tips

• uPy Inline Assembler source-code, emitinlinethumb.c

• ARM Thumb2 Instruction Set Quick Reference Card

• RM0090 Reference Manual

• ARM v7-M Architecture Reference Manual (Available on the ARM site after a simple registration procedure.
Also available on academic sites but beware of out of date versions.)

188 Chapter 2. The MicroPython language

http://wiki.micropython.org/platforms/boards/pyboard/assembler
https://github.com/micropython/micropython/blob/master/py/emitinlinethumb.c
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001l/QRC0001_UAL.pdf
http://www.google.ae/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CBoQFjAA&url=http%3A%2F%2Fwww.st.com%2Fst-web-ui%2Fstatic%2Factive%2Fen%2Fresource%2Ftechnical%2Fdocument%2Freference_manual%2FDM00031020.pdf&ei=G0rSU66xFeuW0QWYwoD4CQ&usg=AFQjCNFuW6TgzE4QpahO_U7g3f3wdwecAg&sig2=iET-R0y9on_Pbflzf9aYDw&bvm=bv.71778758,bs.1,d.bGQ

CHAPTER

THREE

DEVELOPING AND BUILDING MICROPYTHON

This chapter describes some options for extending MicroPython in C. Note that it doesn’t aim to be a complete guide
for developing with MicroPython. See the getting started guide for further information.

3.1 MicroPython external C modules

When developing modules for use with MicroPython you may find you run into limitations with the Python environ-
ment, often due to an inability to access certain hardware resources or Python speed limitations.

If your limitations can’t be resolved with suggestions in Maximising MicroPython Speed, writing some or all of your
module in C is a viable option.

If your module is designed to access or work with commonly available hardware or libraries please consider imple-
menting it inside the MicroPython source tree alongside similar modules and submitting it as a pull request. If however
you’re targeting obscure or proprietary systems it may make more sense to keep this external to the main MicroPython
repository.

This chapter describes how to compile such external modules into the MicroPython executable or firmware image.

3.1.1 Structure of an external C module

A MicroPython user C module is a directory with the following files:

• *.c and/or *.h source code files for your module.

These will typically include the low level functionality being implemented and the MicroPython binding func-
tions to expose the functions and module(s).

Currently the best reference for writing these functions/modules is to find similar modules within the MicroPy-
thon tree and use them as examples.

• micropython.mk contains the Makefile fragment for this module.

$(USERMOD_DIR) is available in micropython.mk as the path to your module directory. As it’s redefined for
each c module, is should be expanded in your micropython.mk to a local make variable, eg EXAMPLE_MOD_DIR
:= $(USERMOD_DIR)

Your micropython.mk must add your modules C files relative to your expanded copy of $(USERMOD_DIR) to
SRC_USERMOD, eg SRC_USERMOD += $(EXAMPLE_MOD_DIR)/example.c

If you have custom CFLAGS settings or include folders to define, these should be added to CFLAGS_USERMOD.

See below for full usage example.

189

https://github.com/micropython/micropython/wiki/Getting-Started

MicroPython Lego RI5 Documentation, Release 1.11

3.1.2 Basic Example

This simple module named example provides a single function example.add_ints(a, b) which adds the two inte-
ger args together and returns the result.

Directory:

example/
example.c
micropython.mk

example.c

// Include required definitions first.
#include "py/obj.h"
#include "py/runtime.h"
#include "py/builtin.h"

// This is the function which will be called from Python as example.add_ints(a, b).
STATIC mp_obj_t example_add_ints(mp_obj_t a_obj, mp_obj_t b_obj) {

// Extract the ints from the micropython input objects
int a = mp_obj_get_int(a_obj);
int b = mp_obj_get_int(b_obj);

// Calculate the addition and convert to MicroPython object.
return mp_obj_new_int(a + b);

}
// Define a Python reference to the function above
STATIC MP_DEFINE_CONST_FUN_OBJ_2(example_add_ints_obj, example_add_ints);

// Define all properties of the example module.
// Table entries are key/value pairs of the attribute name (a string)
// and the MicroPython object reference.
// All identifiers and strings are written as MP_QSTR_xxx and will be
// optimized to word-sized integers by the build system (interned strings).
STATIC const mp_rom_map_elem_t example_module_globals_table[] = {

{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_example) },
{ MP_ROM_QSTR(MP_QSTR_add_ints), MP_ROM_PTR(&example_add_ints_obj) },

};
STATIC MP_DEFINE_CONST_DICT(example_module_globals, example_module_globals_table);

// Define module object.
const mp_obj_module_t example_user_cmodule = {

.base = { &mp_type_module },

.globals = (mp_obj_dict_t*)&example_module_globals,
};

// Register the module to make it available in Python
MP_REGISTER_MODULE(MP_QSTR_example, example_user_cmodule, MODULE_EXAMPLE_ENABLED);

micropython.mk

EXAMPLE_MOD_DIR := $(USERMOD_DIR)

(continues on next page)

190 Chapter 3. Developing and building MicroPython

MicroPython Lego RI5 Documentation, Release 1.11

(continued from previous page)

Add all C files to SRC_USERMOD.
SRC_USERMOD += $(EXAMPLE_MOD_DIR)/example.c

We can add our module folder to include paths if needed
This is not actually needed in this example.
CFLAGS_USERMOD += -I$(EXAMPLE_MOD_DIR)

Finally you will need to define MODULE_EXAMPLE_ENABLED to 1. This can be done by adding
CFLAGS_EXTRA=-DMODULE_EXAMPLE_ENABLED=1 to the make command, or editing mpconfigport.h or
mpconfigboard.h to add

#define MODULE_EXAMPLE_ENABLED (1)

Note that the exact method depends on the port as they have different structures. If not done correctly it will compile
but importing will fail to find the module.

3.1.3 Compiling the cmodule into MicroPython

To build such a module, compile MicroPython (see getting started) with an extra make flag named USER_C_MODULES
set to the directory containing all modules you want included (not to the module itself). For example:

Directory:

my_project/
modules/

example/
example.c
micropython.mk

micropython/
ports/

... stm32/
...

Building for stm32 port:

cd my_project/micropython/ports/stm32
make USER_C_MODULES=../../../modules CFLAGS_EXTRA=-DMODULE_EXAMPLE_ENABLED=1 all

3.1.4 Module usage in MicroPython

Once built into your copy of MicroPython, the module implemented in example.c above can now be accessed in
Python just like any other builtin module, eg

import example
print(example.add_ints(1, 3))
should display 4

3.1. MicroPython external C modules 191

https://github.com/micropython/micropython/wiki/Getting-Started

MicroPython Lego RI5 Documentation, Release 1.11

192 Chapter 3. Developing and building MicroPython

CHAPTER

FOUR

MICROPYTHON LICENSE INFORMATION

The MIT License (MIT)

Copyright (c) 2013-2017 Damien P. George, and others

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

193

MicroPython Lego RI5 Documentation, Release 1.11

194 Chapter 4. MicroPython license information

PYTHON MODULE INDEX

_
_api, 73
_api.app, 85
_api.button, 81
_api.colorsensor, 76
_api.distancesensor, 73
_api.forcesensor, 75
_api.large_technic_hub, 86
_api.lightmatrix, 84
_api.motionsensor, 77
_api.motor, 79
_api.motorpair, 82
_api.speaker, 85
_api.statuslight, 79
_api.util, 84
_onewire, 64

a
array, 6

c
cmath, 7
commands, 88
commands.abstract_handler, 88
commands.hub_methods, 94
commands.light_methods, 90
commands.linegraphmonitor_methods, 88
commands.motor_methods, 93
commands.move_methods, 95
commands.program_methods, 91
commands.sound_methods, 89
commands.wait_methods, 94

e
event_loop, 96

f
firmware, 72

g
gc, 7

h
hub, 65
hub_runtime, 142

m
machine, 32
math, 9
micropython, 56
mindstorms, 97

p
programrunner, 97
protocol, 99
protocol.notifications, 99
protocol.rpc_protocol, 101
protocol.ujsonrpc, 101

r
runtime, 104
runtime.dirty_dict, 104
runtime.multimotor, 105
runtime.stack, 105
runtime.timer, 106
runtime.virtualmachine, 107
runtime.vm_store, 108

s
spike, 110
sys, 11
system, 110
system.abstractwrapper, 119
system.callbacks, 111
system.callbacks.customcallbacks, 111
system.display, 119
system.motors, 114
system.motorwrapper, 114
system.move, 117
system.movewrapper, 117
system.sound, 116

u
ubinascii, 13

195

MicroPython Lego RI5 Documentation, Release 1.11

ucollections, 14
uctypes, 58
uerrno, 15
uhashlib, 16
uheapq, 17
ui.hubui, 121
uio, 17
ujson, 19
uos, 19
urandom, 31
ure, 23
uselect, 25
ustruct, 27
util, 123
util.animations, 125
util.color, 124
util.constants, 136
util.error_handler, 133
util.log, 134
util.motor, 127
util.print_override, 135
util.resetter, 123
util.rotation, 141
util.schedule, 135
util.scratch, 127
util.sensors, 130
util.storage, 129
util.time, 132
utime, 27
utimeq, 63
uzlib, 31

v
version, 143

196 Python Module Index

INDEX

Symbols
_ACCEL (in module runtime.vm_store), 109
_AMBIENT_MODE (in module _api.colorsensor), 76
_BT_PREFIX (in module util.storage), 130
_CARRIAGE_RETURN (in module protocol.ujsonrpc), 102
_COLORLIST (in module _api.colorsensor), 76
_COLORMAP (in module _api.statuslight), 79
_COMBI_MODE (in module _api.colorsensor), 76
_CURRENT_ROTATION (in module util.rotation), 142
_D (in module protocol.notifications), 100
_DEBUG_PAYLOAD (in module protocol.notifications), 100
_DEFAULT_MODE (in module util.sensors), 132
_DISCONNECTED_ERROR (in module _api.motorpair), 82
_EMPTY_DICT (in module programrunner), 98
_ERROR (in module protocol.ujsonrpc), 101
_EVENT_LOOP (in module event_loop), 96
_EVENT_MODE (in module util.sensors), 131
_ID (in module protocol.ujsonrpc), 101
_ID_PREFIX (in module protocol.ujsonrpc), 101
_LIGHT_MODE (in module _api.colorsensor), 76
_LOC (in module runtime.vm_store), 108
_LOG_FILE (in module util.log), 135
_MEM (in module protocol.notifications), 100
_METHOD_PREFIX (in module protocol.ujsonrpc), 102
_MOTOR_PAIRING_ERROR (in module _api.motorpair), 82
_MOTOR_TYPES (in module util.sensors), 132
_NOT_CONNECTED_ERROR (in module _api.app), 86
_NOT_CONNECTED_ERROR (in module

util.print_override), 136
_NO_DATA (in module util.sensors), 131
_PAIR (in module runtime.vm_store), 108
_PARAMS (in module protocol.ujsonrpc), 101
_PCALIB (in module runtime.vm_store), 108
_PORTS (in module util.sensors), 131
_PORT_INDEX_MAP (in module util.sensors), 131
_PORT_TO_IDX (in module system.motors), 114
_PORT_TYPE (in module util.sensors), 131
_PRINT_OVERRIDE (in module com-

mands.program_methods), 91
_RESPONSE (in module protocol.ujsonrpc), 102
_REVERSE_MODES (in module util.sensors), 131
_RQ_LEN (in module protocol.notifications), 100

_RUNNING (in module util.time), 133
_STALL (in module runtime.vm_store), 108
_STARTED_AT (in module util.resetter), 123
_STARTED_AT (in module util.time), 133
_STAT (in module runtime.vm_store), 108
_STOP (in module runtime.vm_store), 108
_STOPPED_AT (in module util.time), 133
_SUFFIX (in module protocol.ujsonrpc), 101
_SUSPENDED_MSG_PATH_ (in module protocol.ujsonrpc),

102
_SYNC_DISPLAY (in module util.sensors), 132
_TRANSFER_HANDLE (in module com-

mands.program_methods), 91
_WQ_LEN (in module protocol.notifications), 100
__FORCE_RESET_PATH__ (in module util.storage), 130
__META_PATH__ (in module util.storage), 130
__PROGRAM_PATH_EXT__ (in module util.storage), 130
__PROGRAM_PATH__ (in module util.storage), 130
__STORAGE_PATH__ (in module util.storage), 130
__bt_connect() (ui.hubui.HubUI method), 122
__bt_disconnect() (ui.hubui.HubUI method), 121
__call__() (machine.Pin method), 38
__cancel_animations() (ui.hubui.HubUI method),

122
__change_slot() (ui.hubui.HubUI method), 121
__connection_changed() (in module hub_runtime),

142
__del__() (hub.BT_VCP method), 71
__delitem__() (runtime.dirty_dict.DirtyDict method),

104
__enter__() (hub.BT_VCP method), 71
__exit__() (hub.BT_VCP method), 71
__get_slot_image() (ui.hubui.HubUI method), 122
__getitem__() (system.callbacks.ButtonCallbacks

method), 112
__getitem__() (system.callbacks.PortCallbacks

method), 113
__init__() (commands.hub_methods.HubMethods

method), 94
__init__() (commands.light_methods.LightMethods

method), 90
__init__() (commands.linegraphmonitor_methods.LinegraphMonitorMethods

197

MicroPython Lego RI5 Documentation, Release 1.11

method), 88
__init__() (commands.motor_methods.MotorMethods

method), 93
__init__() (commands.move_methods.MoveMethods

method), 95
__init__() (commands.program_methods.ProgramMethods

method), 91
__init__() (commands.sound_methods.SoundMethods

method), 89
__init__() (commands.wait_methods.WaitMethods

method), 95
__init__() (runtime.dirty_dict.DirtyDict method), 104
__init__() (system.display.DisplayWrapper method),

120
__init__() (system.motorwrapper.MotorWrapper

method), 115
__init__() (system.movewrapper.MoveWrapper

method), 118
__init__() (system.sound.SoundWrapper method), 116
__on_center_button() (ui.hubui.HubUI method), 122
__on_connect_button() (ui.hubui.HubUI method),

122
__repl_reset() (util.resetter.RTTimer method), 123
__shutdown_timer() (ui.hubui.HubUI method), 122
__start_autoshutdown() (ui.hubui.HubUI method),

122
__toggle_program() (ui.hubui.HubUI method), 121
__uch() (system.callbacks.ConnectionCallbacks

method), 113
__version__ (in module hub), 65
_api

module, 73
_api.app

module, 85
_api.button

module, 81
_api.colorsensor

module, 76
_api.distancesensor

module, 73
_api.forcesensor

module, 75
_api.large_technic_hub

module, 86
_api.lightmatrix

module, 84
_api.motionsensor

module, 77
_api.motor

module, 79
_api.motorpair

module, 82
_api.speaker

module, 85

_api.statuslight
module, 79

_api.util
module, 84

_calc_degrees() (in module system.motorwrapper),
115

_callback() (system.abstractwrapper.AbstractWrapper
method), 119

_check_condition() (runtime.stack.Stack method),
105

_clockwise() (in module system.motorwrapper), 115
_counterclockwise() (in module sys-

tem.motorwrapper), 115
_direction_to_steering() (sys-

tem.movewrapper.MoveWrapper method),
118

_discard() (event_loop.EventLoop method), 96
_emit_runtime_error()

(util.error_handler.ErrorHandler method),
133

_ensure_folder_exists() (in module util.storage),
129

_error_if_running() (com-
mands.linegraphmonitor_methods.LinegraphMonitorMethods
method), 88

_file_to_slotid() (in module util.storage), 129
_get_color() (_api.colorsensor.ColorSensor method),

77
_get_metadata() (in module util.storage), 129
_get_port_device() (in module _api.colorsensor), 76
_get_port_device() (in module _api.forcesensor), 75
_handle_error() (util.error_handler.ErrorHandler

method), 133
_handle_message() (protocol.ujsonrpc.JSONRPC

method), 102
_handle_write_print_override() (com-

mands.program_methods.ProgramMethods
method), 92

_is_color_sensor() (in module _api.colorsensor), 76
_is_distance_sensor()

(_api.distancesensor.DistanceSensor method),
74

_is_force_sensor() (in module _api.forcesensor), 75
_is_motor() (in module _api.motor), 80
_is_motor() (in module _api.motorpair), 82
_is_motor() (in module util.sensors), 131
_is_pressed() (_api.forcesensor.ForceSensor method),

75
_latest_activity (in module ui.hubui), 121
_mark_dirty() (runtime.dirty_dict.DirtyDict method),

104
_merge_display_params() (com-

mands.light_methods.LightMethods static
method), 90

198 Index

MicroPython Lego RI5 Documentation, Release 1.11

_move_slot_lookup() (in module util.storage), 129
_move_with_speed() (_api.motorpair.MotorPair

method), 83
_onewire

module, 64
_play_sound() (_api.app.App method), 86
_pop_suspend_message() (proto-

col.ujsonrpc.JSONRPC method), 102
_program_start() (ui.hubui.HubUI method), 122
_program_stop() (ui.hubui.HubUI method), 122
_register() (system.abstractwrapper.AbstractWrapper

method), 119
_register_method_handler() (proto-

col.rpc_protocol.RPCProtocol method),
101

_set_metadata() (in module util.storage), 129
_set_mode() (_api.colorsensor.ColorSensor method),

77
_set_mode() (_api.distancesensor.DistanceSensor

method), 74
_set_range_mode() (_api.distancesensor.DistanceSensor

method), 74
_shortest() (in module system.motorwrapper), 115
_start_test_task() (sys-

tem.callbacks.customcallbacks.CustomSensorCallbackManager
method), 112

_type_change_handler() (in module util.sensors), 131
_update() (system.motors.Motors method), 114
_write_to_log() (in module util.log), 134

A
a2b_base64() (in module ubinascii), 13
abs()

built-in function, 2
AbstractBlockDev (class in uos), 22
AbstractHandler (class in com-

mands.abstract_handler), 88
AbstractHandler._rpc (in module com-

mands.abstract_handler), 88
AbstractWrapper (class in system.abstractwrapper),

119
accelerometer() (hub.Motion method), 68
accelerometer_filter() (hub.Motion method), 68
acos() (in module math), 9
acosh() (in module math), 9
ADC (class in machine), 43
add_method() (protocol.ujsonrpc.JSONRPC method),

102
add_port_prop() (in module runtime.vm_store), 108
add_prop() (in module runtime.vm_store), 108
addressof() (in module uctypes), 61
adjust_brightness() (in module util.scratch), 128
af() (machine.Pin method), 40
af_list() (machine.Pin method), 39

all()
built-in function, 2

alloc_emergency_exception_buf() (in module mi-
cropython), 56

any()
built-in function, 2

any() (hub.BT_VCP method), 71
any() (machine.UART method), 46
App (class in _api.app), 86
append() (array.array.array method), 6
append() (ucollections.deque method), 14
appl_checksum() (in module firmware), 72
appl_image_initialise() (in module firmware), 72
appl_image_read() (in module firmware), 72
appl_image_store() (in module firmware), 72
argv (in module sys), 12
ArithmeticError, 5
array

module, 6
ARRAY (in module uctypes), 61
array.array (class in array), 6
asin() (in module math), 9
asinh() (in module math), 9
AssertionError, 5
atan() (in module math), 9
atan2() (in module math), 9
atanh() (in module math), 9
AttributeError, 5
await_all() (runtime.multimotor.MultiMotor method),

105
await_callback() (sys-

tem.abstractwrapper.AbstractWrapper
method), 119

AZURE (in module util.color), 124

B
b2a_base64() (in module ubinascii), 13
baremetal, 145
BaseException, 5
Battery (class in hub), 69
battery (in module hub), 69
Battery.BATTERY_BAD_BATTERY (in module hub), 70
Battery.BATTERY_HUB_TEMPERATURE_CRITICAL_OUT_OF_RANGE

(in module hub), 69
Battery.BATTERY_NO_ERROR (in module hub), 69
Battery.BATTERY_TEMPERATURE_OUT_OF_RANGE (in

module hub), 70
Battery.BATTERY_TEMPERATURE_SENSOR_FAIL (in

module hub), 70
Battery.BATTERY_VOLTAGE_TOO_LOW (in module hub),

70
Battery.CHARGER_STATE_CHARGING_COMPLETED (in

module hub), 70

Index 199

MicroPython Lego RI5 Documentation, Release 1.11

Battery.CHARGER_STATE_CHARGING_ONGOING (in
module hub), 70

Battery.CHARGER_STATE_DISCHARGING (in module
hub), 70

Battery.CHARGER_STATE_FAIL (in module hub), 70
Battery.USB_CH_PORT_CDP (in module hub), 70
Battery.USB_CH_PORT_DCP (in module hub), 70
Battery.USB_CH_PORT_NONE (in module hub), 70
Battery.USB_CH_PORT_SDP (in module hub), 70
battery_status (in module util.sensors), 131
beep() (_api.speaker.Speaker method), 85
beep() (hub.Sound method), 68
beep() (system.sound.SoundWrapper method), 116
beep_async() (system.sound.SoundWrapper method),

116
BF_LEN (in module uctypes), 61
BF_POS (in module uctypes), 61
BFINT16 (in module uctypes), 61
BFINT32 (in module uctypes), 61
BFINT64 (in module uctypes), 61
BFINT8 (in module uctypes), 61
BFUINT16 (in module uctypes), 61
BFUINT32 (in module uctypes), 61
BFUINT64 (in module uctypes), 61
BFUINT8 (in module uctypes), 61
BIG_ENDIAN (in module uctypes), 61
bin()

built-in function, 2
BLACK (in module util.color), 124
ble (in module hub), 70
BLUE (in module util.color), 124
bluetooth (class in hub), 70
bluetooth (in module hub), 70
board, 145
board (class in machine), 40
bool (built-in class), 2
BOOLEAN (in module util.constants), 137
bootloader_version() (in module firmware), 73
bootup_animation() (in module util.animations), 125
BOOTUP_FRAMES (in module util.animations), 126
BRAKE (in module util.constants), 137
brake() (system.motorwrapper.MotorWrapper method),

115
brake() (system.movewrapper.MoveWrapper method),

118
broadcast() (runtime.virtualmachine.VirtualMachine

method), 107
bt (class in hub), 70
bt_animation() (in module util.animations), 125
BT_VCP (class in hub), 71
BT_VCP (in module hub), 71
BT_VCP (in module util.constants), 137
built-in function

abs(), 2

all(), 2
any(), 2
bin(), 2
callable(), 2
chr(), 2
classmethod(), 2
compile(), 2
delattr(), 2
dir(), 3
divmod(), 3
enumerate(), 3
eval(), 3
exec(), 3
execfile(), 3
filter(), 3
getattr(), 3
globals(), 3
hasattr(), 3
hash(), 3
help(), 3
hex(), 3
id(), 3
isinstance(), 3
issubclass(), 3
iter(), 3
len(), 3
locals(), 3
map(), 3
max(), 3
min(), 3
next(), 4
oct(), 4
open(), 4
ord(), 4
pow(), 4
print(), 4
range(), 4
repr(), 4
reversed(), 4
round(), 4
setattr(), 4
sorted(), 4
spikeprint(), 4
staticmethod(), 4
sum(), 4
super(), 4
zip(), 4

Button (class in _api.button), 81
Button (class in hub), 67
button (in module hub), 67
Button.center (in module hub), 67
Button.connect (in module hub), 67
Button.left (in module hub), 67
Button.right (in module hub), 67

200 Index

MicroPython Lego RI5 Documentation, Release 1.11

ButtonCallbacks (class in system.callbacks), 112
bytearray (built-in class), 2
bytearray_at() (in module uctypes), 61
byteorder (in module sys), 12
bytes (built-in class), 2
bytes_at() (in module uctypes), 61
BytesIO (class in uio), 18

C
calcsize() (in module ustruct), 27
calibration() (machine.RTC method), 52
call() (protocol.ujsonrpc.JSONRPC method), 102
call_soon() (event_loop.EventLoop method), 96
callable()

built-in function, 2
callback() (hub.bluetooth method), 71
callback() (hub.BT_VCP method), 71
callback() (hub.Button method), 67
callback() (hub.Display method), 67
callback() (hub.Motion method), 68
callback() (hub.Sound method), 68
callback() (system.callbacks.CallbackHandler

method), 113
CallbackHandler (class in system.callbacks), 113
Callbacks (class in system.callbacks), 112
callee-owned tuple, 145
cancel() (event_loop.EventLoop method), 96
cancel() (system.abstractwrapper.AbstractWrapper

method), 119
cancel_call() (protocol.ujsonrpc.JSONRPC method),

102
capacity_left() (hub.Battery method), 69
cat_log() (in module util.log), 134
ceil() (in module math), 9
chain_animations() (in module util.animations), 125
change_execution_mode() (ui.hubui.HubUI method),

122
charger_detect() (hub.Battery method), 69
chdir() (in module uos), 20
check_all_conditions() (run-

time.virtualmachine.VirtualMachine method),
107

check_state() (system.callbacks.ConnectionCallbacks
method), 113

choice() (in module urandom), 32
chr()

built-in function, 2
clamp() (in module util.scratch), 127
clamp_power() (in module util.motor), 127
clamp_speed() (in module util.motor), 127
clamp_steering() (in module _api.motorpair), 82
classmethod()

built-in function, 2
clear() (hub.Display method), 67

clear() (runtime.dirty_dict.DirtyDict method), 105
clear() (system.display.DisplayWrapper method), 120
clear_log() (in module util.log), 134
clear_methods() (protocol.ujsonrpc.JSONRPC

method), 102
clear_slot() (in module util.storage), 129
clear_tasks() (system.callbacks.customcallbacks.CustomSensorCallbackManager

method), 112
close() (hub.BT_VCP method), 71
close_program() (in module util.storage), 129
cmath

module, 7
collect() (in module gc), 8
color_percentage() (in module util.color), 124
color_to_number() (in module util.scratch), 127
ColorSensor (class in _api.colorsensor), 76
commands

module, 88
commands.abstract_handler

module, 88
commands.hub_methods

module, 94
commands.light_methods

module, 90
commands.linegraphmonitor_methods

module, 88
commands.motor_methods

module, 93
commands.move_methods

module, 95
commands.program_methods

module, 91
commands.sound_methods

module, 89
commands.wait_methods

module, 94
compare() (in module util.scratch), 128
compile()

built-in function, 2
compile() (in module ure), 24
complex (built-in class), 2
connect() (hub.bluetooth method), 71
ConnectionCallbacks (class in system.callbacks), 113
const() (in module micropython), 56
convert_animation_frame() (in module util.scratch),

128
convert_brightness() (in module util.scratch), 128
convert_image() (in module util.scratch), 128
copysign() (in module math), 9
cos() (in module cmath), 7
cos() (in module math), 9
cosh() (in module math), 9
cpu (class in machine), 40
CPython, 145

Index 201

MicroPython Lego RI5 Documentation, Release 1.11

crc8() (in module _onewire), 64
current() (hub.Battery method), 69
current_motion() (in module util.sensors), 131
CustomSensorCallbackManager (class in sys-

tem.callbacks.customcallbacks), 111
CustomSensorCallbackManager._active_tasks (in

module system.callbacks.customcallbacks), 112

D
DATA_DIR (in module util.constants), 138
datetime() (machine.RTC method), 52
debug() (machine.Pin method), 40
decode() (array.array.array method), 6
DecompIO (class in uzlib), 31
decompress() (in module uzlib), 31
deepsleep() (in module machine), 34
DEFAULT_IMAGE (in module ui.hubui), 121
DEFAULT_IMAGE (in module util.constants), 136
degrees() (in module math), 9
deinit() (machine.SPI method), 48
deinit() (machine.Timer method), 54
deinit() (machine.UART method), 46
delattr()

built-in function, 2
deque() (in module ucollections), 14
dict (built-in class), 2
dict() (machine.Pin method), 40
dict_get() (runtime.dirty_dict.DirtyDict method), 104
dict_set() (runtime.dirty_dict.DirtyDict method), 104
did_bump() (system.callbacks.customcallbacks.CustomSensorCallbackManager

static method), 111
did_change() (system.callbacks.customcallbacks.CustomSensorCallbackManager

static method), 111
digest() (uhashlib.hash method), 16
DIM_WHITE (in module util.color), 124
dir()

built-in function, 3
dir_to_rotation() (in module util.rotation), 141
dir_to_speed() (in module util.motor), 127
dirty_items() (runtime.dirty_dict.DirtyDict method),

105
DirtyDict (class in runtime.dirty_dict), 104
disable() (in module gc), 8
disable_irq() (in module machine), 33
discoverable() (hub.bt method), 70
Display (class in hub), 67
display (in module hub), 67
display_brightness() (runtime.vm_store.VMStore

method), 110
DISPLAY_HEIGHT (in module util.animations), 126
DISPLAY_WIDTH (in module util.animations), 126
DisplayWrapper (class in system.display), 120
DistanceSensor (class in _api.distancesensor), 74

DistanceSensor._LIGHT_MODE (in module
_api.distancesensor), 74

DistanceSensor._LONG_RANGE_MODE (in module
_api.distancesensor), 74

DistanceSensor._SHORT_RANGE_MODE (in module
_api.distancesensor), 74

DistanceSensor.CM (in module _api.distancesensor),
74

DistanceSensor.IN (in module _api.distancesensor),
74

DistanceSensor.PERCENT (in module
_api.distancesensor), 74

divmod()
built-in function, 3

download_animation() (in module util.animations),
125

dump() (in module ujson), 19
dumps() (in module ujson), 19
dupterm() (in module uos), 21

E
e (in module cmath), 7
e (in module math), 11
Ellipsis (built-in variable), 6
emit() (protocol.ujsonrpc.JSONRPC method), 102
emit_large() (protocol.ujsonrpc.JSONRPC method),

102
enable() (in module gc), 8
enable_irq() (in module machine), 33
enumerate()

built-in function, 3
EOFError, 5
erase_superblock() (in module firmware), 73
erf() (in module math), 9
erfc() (in module math), 9
error() (protocol.ujsonrpc.JSONRPC method), 102
error_handler (in module util.error_handler), 133
errorcode (in module uerrno), 16
ErrorHandler (class in util.error_handler), 133
eval()

built-in function, 3
event_loop

module, 96
EventLoop (class in event_loop), 96
Exception, 5
exec()

built-in function, 3
execfile()

built-in function, 3
exit() (in module sys), 11
exp() (in module cmath), 7
exp() (in module math), 9
expm1() (in module math), 9
ext_flash_erase() (in module firmware), 73

202 Index

MicroPython Lego RI5 Documentation, Release 1.11

ext_flash_read_length() (in module firmware), 73
extend() (array.array.array method), 6

F
fabs() (in module math), 9
factorial() (in module math), 11
feed() (machine.wdt method), 55
file_transfer() (in module hub), 65
FileIO (class in uio), 18
filter()

built-in function, 3
filter_dict_len() (in module programrunner), 97
filter_vm_lists() (in module programrunner), 97
filter_vm_vars() (in module programrunner), 97
firmware

module, 72
flash_read() (in module firmware), 72
flash_write() (in module firmware), 73
float (built-in class), 3
FLOAT (in module util.constants), 137
float() (system.motorwrapper.MotorWrapper method),

116
float() (system.movewrapper.MoveWrapper method),

118
FLOAT32 (in module uctypes), 61
FLOAT64 (in module uctypes), 61
floor() (in module math), 9
fmod() (in module math), 10
ForceSensor (class in _api.forcesensor), 75
freq() (in module machine), 33
frexp() (in module math), 10
from_bytes() (int class method), 3
from_direction() (sys-

tem.movewrapper.MoveWrapper method),
118

from_steering() (in module system.movewrapper),
117

from_steering() (system.movewrapper.MoveWrapper
method), 118

frozenset (built-in class), 3

G
gamma() (in module math), 10
gc

module, 7
generate_project_id() (in module util.storage), 129
GeneratorExit, 5
gesture() (hub.Motion method), 68
get() (in module runtime.timer), 106
get() (system.motorwrapper.MotorWrapper method),

116
get_ambient_light() (_api.colorsensor.ColorSensor

method), 77
get_blue() (_api.colorsensor.ColorSensor method), 77

get_color() (_api.colorsensor.ColorSensor method),
77

get_color_percentage() (in module util.color), 124
get_default_speed() (_api.motor.Motor method), 80
get_default_speed() (_api.motorpair.MotorPair

method), 82
get_degrees_counted() (_api.motor.Motor method),

80
get_distance_cm() (_api.distancesensor.DistanceSensor

method), 74
get_distance_inches()

(_api.distancesensor.DistanceSensor method),
74

get_distance_percentage()
(_api.distancesensor.DistanceSensor method),
74

get_event_loop() (in module event_loop), 96
get_force_newton() (_api.forcesensor.ForceSensor

method), 75
get_force_percentage()

(_api.forcesensor.ForceSensor method),
75

get_gesture() (_api.motionsensor.MotionSensor
method), 78

get_green() (_api.colorsensor.ColorSensor method),
77

get_methods() (commands.abstract_handler.AbstractHandler
method), 88

get_methods() (commands.hub_methods.HubMethods
method), 94

get_methods() (commands.light_methods.LightMethods
method), 90

get_methods() (commands.linegraphmonitor_methods.LinegraphMonitorMethods
method), 88

get_methods() (commands.motor_methods.MotorMethods
method), 93

get_methods() (commands.move_methods.MoveMethods
method), 95

get_methods() (commands.program_methods.ProgramMethods
method), 91

get_methods() (commands.sound_methods.SoundMethods
method), 89

get_methods() (commands.wait_methods.WaitMethods
method), 95

get_orientation() (_api.motionsensor.MotionSensor
method), 78

get_path() (in module util.storage), 129
get_pitch_angle() (_api.motionsensor.MotionSensor

method), 78
get_pixel() (util.constants.Image method), 138
get_position() (_api.motor.Motor method), 80
get_program_project_id() (in module util.storage),

129
get_program_type() (in module util.storage), 129

Index 203

MicroPython Lego RI5 Documentation, Release 1.11

get_red() (_api.colorsensor.ColorSensor method), 77
get_reflected_light()

(_api.colorsensor.ColorSensor method),
76

get_rgb_intensity() (_api.colorsensor.ColorSensor
method), 77

get_rgb_percentage() (in module util.color), 124
get_roll_angle() (_api.motionsensor.MotionSensor

method), 78
get_sensor_value() (in module util.sensors), 131
get_speed() (_api.motor.Motor method), 80
get_storage_information() (in module util.storage),

129
get_time() (in module util.time), 132
get_time() (runtime.virtualmachine.VirtualMachine

method), 107
get_used_slots() (in module util.storage), 129
get_variable() (in module util.scratch), 128
get_volume() (_api.speaker.Speaker method), 85
get_yaw_angle() (_api.motionsensor.MotionSensor

method), 78
getattr()

built-in function, 3
getcwd() (in module uos), 20
getrandbits() (in module urandom), 32
getvalue() (uio.BytesIO method), 18
globals()

built-in function, 3
GPIO, 145
GPIO port, 146
gpio() (machine.Pin method), 39
GREEN (in module util.color), 124
group() (ure.match method), 25
gyroscope() (hub.Motion method), 68
gyroscope_filter() (hub.Motion method), 68

H
handle_center_button_lights() (com-

mands.light_methods.LightMethods method),
90

handle_delete_file() (com-
mands.linegraphmonitor_methods.LinegraphMonitorMethods
method), 88

handle_display_animation() (com-
mands.light_methods.LightMethods method),
90

handle_display_clear() (com-
mands.light_methods.LightMethods method),
90

handle_display_image() (com-
mands.light_methods.LightMethods method),
90

handle_display_image_for() (com-
mands.light_methods.LightMethods method),

90
handle_display_rotate_direction() (com-

mands.light_methods.LightMethods method),
90

handle_display_rotate_orientation() (com-
mands.light_methods.LightMethods method),
90

handle_display_set_pixel() (com-
mands.light_methods.LightMethods method),
90

handle_display_sync() (com-
mands.light_methods.LightMethods method),
90

handle_display_text() (com-
mands.light_methods.LightMethods method),
90

handle_get_hub_info() (com-
mands.hub_methods.HubMethods method),
94

handle_get_linegraph_monitor_info() (com-
mands.linegraphmonitor_methods.LinegraphMonitorMethods
method), 88

handle_get_linegraph_monitor_package() (com-
mands.linegraphmonitor_methods.LinegraphMonitorMethods
method), 88

handle_motor_adjust_offset() (com-
mands.motor_methods.MotorMethods method),
93

handle_motor_go_direction_to_position() (com-
mands.motor_methods.MotorMethods method),
93

handle_motor_go_to_relative_position() (com-
mands.motor_methods.MotorMethods method),
93

handle_motor_position() (com-
mands.motor_methods.MotorMethods method),
93

handle_motor_pwm() (com-
mands.motor_methods.MotorMethods method),
93

handle_motor_run_for_degrees() (com-
mands.motor_methods.MotorMethods method),
93

handle_motor_run_timed() (com-
mands.motor_methods.MotorMethods method),
93

handle_motor_set_position() (com-
mands.motor_methods.MotorMethods method),
93

handle_motor_start() (com-
mands.motor_methods.MotorMethods method),
93

handle_motor_stop() (com-
mands.motor_methods.MotorMethods method),

204 Index

MicroPython Lego RI5 Documentation, Release 1.11

93
handle_move_project() (com-

mands.program_methods.ProgramMethods
method), 92

handle_move_start_powers() (com-
mands.move_methods.MoveMethods method),
95

handle_move_start_speeds() (com-
mands.move_methods.MoveMethods method),
95

handle_move_stop() (com-
mands.move_methods.MoveMethods method),
95

handle_move_tank_degrees() (com-
mands.move_methods.MoveMethods method),
95

handle_move_tank_time() (com-
mands.move_methods.MoveMethods method),
95

handle_notify_error()
(util.error_handler.ErrorHandler method),
133

handle_play_sound() (com-
mands.sound_methods.SoundMethods method),
89

handle_program_execute() (com-
mands.program_methods.ProgramMethods
method), 92

handle_program_get_time() (com-
mands.program_methods.ProgramMethods
method), 92

handle_program_modechange() (com-
mands.program_methods.ProgramMethods
method), 92

handle_program_reset_time() (com-
mands.program_methods.ProgramMethods
method), 91

handle_program_start_time() (com-
mands.program_methods.ProgramMethods
method), 92

handle_program_terminate() (com-
mands.program_methods.ProgramMethods
method), 92

handle_remove_project() (com-
mands.program_methods.ProgramMethods
method), 92

handle_reset_yaw() (com-
mands.hub_methods.HubMethods method),
94

handle_runtime_error()
(util.error_handler.ErrorHandler method),
133

handle_set_hub_name() (com-
mands.hub_methods.HubMethods method),

94
handle_set_port_mode() (com-

mands.hub_methods.HubMethods method),
94

handle_soft_reset() (com-
mands.program_methods.ProgramMethods
method), 92

handle_sound_beep() (com-
mands.sound_methods.SoundMethods method),
89

handle_sound_beep_for_time() (com-
mands.sound_methods.SoundMethods method),
89

handle_sound_off() (com-
mands.sound_methods.SoundMethods method),
89

handle_start_write_program() (com-
mands.program_methods.ProgramMethods
method), 92

handle_storage_status() (com-
mands.program_methods.ProgramMethods
method), 92

handle_trigger_current_state() (com-
mands.hub_methods.HubMethods method),
94

handle_ultrasonic_light_up() (com-
mands.light_methods.LightMethods method),
90

handle_user_program_error()
(util.error_handler.ErrorHandler method),
133

handle_wait_gesture() (com-
mands.wait_methods.WaitMethods method),
95

handle_when_sensor_changed() (com-
mands.wait_methods.WaitMethods method),
95

handle_when_sensor_force_bumped() (com-
mands.wait_methods.WaitMethods method),
95

handle_when_sensor_force_released() (com-
mands.wait_methods.WaitMethods method),
95

handle_write_package() (com-
mands.program_methods.ProgramMethods
method), 91

hard_reset() (system.callbacks.ButtonCallbacks
method), 112

hard_reset() (system.callbacks.CallbackHandler
method), 113

hard_reset() (system.callbacks.Callbacks method),
112

hard_reset() (system.callbacks.PortCallbacks
method), 112

Index 205

MicroPython Lego RI5 Documentation, Release 1.11

hasattr()
built-in function, 3

hash()
built-in function, 3

heap_lock() (in module micropython), 57
heap_unlock() (in module micropython), 57
heapify() (in module uheapq), 17
heappop() (in module uheapq), 17
heappush() (in module uheapq), 17
height() (util.constants.Image method), 138
help()

built-in function, 3
hex()

built-in function, 3
hexdigest() (uhashlib.hash method), 16
hexlify() (in module ubinascii), 13
high() (machine.Pin method), 39
HOLD (in module util.constants), 137
hold() (system.motorwrapper.MotorWrapper method),

115
hold() (system.movewrapper.MoveWrapper method),

118
hub

module, 65
hub_runtime

module, 142
HubMethods (class in commands.hub_methods), 94
HubUI (class in ui.hubui), 121

I
I2C (class in machine), 49
id()

built-in function, 3
idle (ui.hubui.HubUI property), 122
idle() (in module machine), 34
ilistdir() (in module uos), 20
Image (class in util.constants), 138
Image.ALL_ARROWS (in module util.constants), 141
Image.ALL_CLOCKS (in module util.constants), 141
Image.ANGRY (in module util.constants), 139
Image.ARROW_E (in module util.constants), 139
Image.ARROW_N (in module util.constants), 139
Image.ARROW_NE (in module util.constants), 139
Image.ARROW_NW (in module util.constants), 140
Image.ARROW_S (in module util.constants), 140
Image.ARROW_SE (in module util.constants), 140
Image.ARROW_SW (in module util.constants), 140
Image.ARROW_W (in module util.constants), 140
Image.ASLEEP (in module util.constants), 139
Image.BUTTERFLY (in module util.constants), 140
Image.CHESSBOARD (in module util.constants), 140
Image.CLOCK1 (in module util.constants), 139
Image.CLOCK10 (in module util.constants), 139
Image.CLOCK11 (in module util.constants), 139

Image.CLOCK12 (in module util.constants), 139
Image.CLOCK2 (in module util.constants), 139
Image.CLOCK3 (in module util.constants), 139
Image.CLOCK4 (in module util.constants), 139
Image.CLOCK5 (in module util.constants), 139
Image.CLOCK6 (in module util.constants), 139
Image.CLOCK7 (in module util.constants), 139
Image.CLOCK8 (in module util.constants), 139
Image.CLOCK9 (in module util.constants), 139
Image.CONFUSED (in module util.constants), 139
Image.COW (in module util.constants), 140
Image.DIAMOND (in module util.constants), 140
Image.DIAMOND_SMALL (in module util.constants), 140
Image.DUCK (in module util.constants), 140
Image.FABULOUS (in module util.constants), 139
Image.GHOST (in module util.constants), 140
Image.GIRAFFE (in module util.constants), 140
Image.GO_DOWN (in module util.constants), 140
Image.GO_LEFT (in module util.constants), 140
Image.GO_RIGHT (in module util.constants), 140
Image.GO_UP (in module util.constants), 140
Image.HAPPY (in module util.constants), 139
Image.HEART (in module util.constants), 139
Image.HEART_SMALL (in module util.constants), 139
Image.HOUSE (in module util.constants), 140
Image.MEH (in module util.constants), 139
Image.MUSIC_CROTCHET (in module util.constants), 140
Image.MUSIC_QUAVER (in module util.constants), 140
Image.MUSIC_QUAVERS (in module util.constants), 140
Image.NO (in module util.constants), 139
Image.PACMAN (in module util.constants), 140
Image.PITCHFORK (in module util.constants), 140
Image.RABBIT (in module util.constants), 140
Image.ROLLERSKATE (in module util.constants), 140
Image.SAD (in module util.constants), 139
Image.SILLY (in module util.constants), 139
Image.SKULL (in module util.constants), 140
Image.SMILE (in module util.constants), 139
Image.SNAKE (in module util.constants), 141
Image.SQUARE (in module util.constants), 140
Image.SQUARE_SMALL (in module util.constants), 140
Image.STICKFIGURE (in module util.constants), 140
Image.SURPRISED (in module util.constants), 139
Image.SWORD (in module util.constants), 140
Image.TARGET (in module util.constants), 140
Image.TORTOISE (in module util.constants), 140
Image.TRIANGLE (in module util.constants), 140
Image.TRIANGLE_LEFT (in module util.constants), 140
Image.TSHIRT (in module util.constants), 140
Image.UMBRELLA (in module util.constants), 141
Image.XMAS (in module util.constants), 140
Image.YES (in module util.constants), 139
implementation (in module sys), 12
ImportError, 5

206 Index

MicroPython Lego RI5 Documentation, Release 1.11

INACTIVE_SHUTDOWN_BT_MS (in module ui.hubui), 121
INACTIVE_SHUTDOWN_BT_MS (in module util.constants),

137
INACTIVE_SHUTDOWN_MS (in module ui.hubui), 121
INACTIVE_SHUTDOWN_MS (in module util.constants), 137
IndentationError, 5
IndexError, 5
info() (hub.Battery method), 69
info() (hub.bt method), 70
info() (hub.Port method), 66
info() (hub.supervision method), 71
info() (in module firmware), 72
info() (in module hub), 65
info() (in module machine), 35
info() (machine.RTC method), 52
init() (hub.USB_VCP method), 72
init() (in module hub_runtime), 142
init() (machine.I2C method), 50
init() (machine.Pin method), 38
init() (machine.SPI method), 48
init() (machine.Timer method), 54
init() (machine.UART method), 45
init_attach() (system.callbacks.PortCallbacks

method), 113
initialize() (util.error_handler.ErrorHandler

method), 133
int (built-in class), 3
INT16 (in module uctypes), 61
INT32 (in module uctypes), 61
INT64 (in module uctypes), 61
INT8 (in module uctypes), 61
interned string, 146
INTERRUPTED (in module util.constants), 137
IOBase (class in uio), 18
ioctl() (uos.AbstractBlockDev method), 22
ipoll() (uselect.poll method), 26
irq() (machine.Pin method), 39
irq() (machine.UART method), 46
is_int() (in module util.scratch), 128
is_less_than() (sys-

tem.callbacks.customcallbacks.CustomSensorCallbackManager
static method), 111

is_motor() (system.motors.Motors method), 114
is_pressed() (_api.button.Button method), 82
is_pressed() (_api.forcesensor.ForceSensor method),

75
is_pressed() (hub.Button method), 67
is_running() (programrunner.ProgramRunner

method), 98
is_type() (in module util.sensors), 131
is_valid() (system.movewrapper.MoveWrapper

method), 118
isclose() (in module math), 11
isconnected() (hub.BT_VCP method), 71

isenabled() (in module gc), 8
isfinite() (in module math), 10
isinf() (in module math), 10
isinstance()

built-in function, 3
isnan() (in module math), 10
issubclass()

built-in function, 3
iter()

built-in function, 3

J
JSONRPC (class in protocol.ujsonrpc), 102
JSONRPC.methods (in module protocol.ujsonrpc), 103

K
kbd_intr() (in module micropython), 57
KeyboardInterrupt, 5
KeyError, 5

L
LargeTechnicHub (class in _api.large_technic_hub), 86
LargeTechnicHub._left_button (in module

_api.large_technic_hub), 87
LargeTechnicHub._light_matrix (in module

_api.large_technic_hub), 87
LargeTechnicHub._motion_sensor (in module

_api.large_technic_hub), 87
LargeTechnicHub._right_button (in module

_api.large_technic_hub), 87
LargeTechnicHub._speaker (in module

_api.large_technic_hub), 87
LargeTechnicHub._status_light (in module

_api.large_technic_hub), 87
LargeTechnicHub.PORT_A (in module

_api.large_technic_hub), 87
LargeTechnicHub.PORT_B (in module

_api.large_technic_hub), 87
LargeTechnicHub.PORT_C (in module

_api.large_technic_hub), 87
LargeTechnicHub.PORT_D (in module

_api.large_technic_hub), 87
LargeTechnicHub.PORT_E (in module

_api.large_technic_hub), 87
LargeTechnicHub.PORT_F (in module

_api.large_technic_hub), 87
ldexp() (in module math), 10
led() (in module hub), 65
led_fade_in_out() (in module util.animations), 125
led_fade_to() (in module util.animations), 125
left_button (_api.large_technic_hub.LargeTechnicHub

property), 86
len()

built-in function, 3

Index 207

MicroPython Lego RI5 Documentation, Release 1.11

lgamma() (in module math), 10
light_matrix (_api.large_technic_hub.LargeTechnicHub

property), 86
light_up() (_api.colorsensor.ColorSensor method), 76
light_up() (_api.distancesensor.DistanceSensor

method), 74
light_up_all() (_api.colorsensor.ColorSensor

method), 76
light_up_all() (_api.distancesensor.DistanceSensor

method), 74
LightMatrix (class in _api.lightmatrix), 84
LightMethods (class in commands.light_methods), 90
LightMethods.DEFAULT_DISPLAY_PARAMS (in module

commands.light_methods), 91
lightsleep() (in module machine), 34
LINEGRAPH_DIR (in module util.constants), 138
LinegraphMonitorMethods (class in com-

mands.linegraphmonitor_methods), 88
list (built-in class), 3
list_append() (runtime.dirty_dict.DirtyDict method),

105
list_clear() (runtime.dirty_dict.DirtyDict method),

104
list_del() (runtime.dirty_dict.DirtyDict method), 104
list_insert() (runtime.dirty_dict.DirtyDict method),

104
list_set() (runtime.dirty_dict.DirtyDict method), 105
listdir() (in module uos), 20
LITTLE_ENDIAN (in module uctypes), 61
load() (in module ujson), 19
loads() (in module ujson), 19
LOCAL_NAME (in module util.constants), 138
locals()

built-in function, 3
localtime() (in module utime), 28
log() (in module cmath), 7
log() (in module math), 10
log10() (in module cmath), 7
log10() (in module math), 10
log2() (in module math), 10
log_critical_error() (in module util.log), 134
log_to_file() (in module util.log), 134
LONG_PRESS_MS (in module util.constants), 137
LookupError, 5
looper() (protocol.rpc_protocol.RPCProtocol method),

101
low() (machine.Pin method), 39
LPF2_ACCELERATION (in module util.constants), 136
LPF2_FLIPPER_COLOR (in module util.constants), 136
LPF2_FLIPPER_DISTANCE (in module util.constants),

136
LPF2_FLIPPER_FORCE (in module util.constants), 136
LPF2_FLIPPER_MOTOR_LARGE (in module

util.constants), 136

LPF2_FLIPPER_MOTOR_MEDIUM (in module
util.constants), 136

LPF2_FLIPPER_MOTOR_SMALL (in module
util.constants), 136

LPF2_GYRO (in module util.constants), 136
LPF2_ORIENTATION (in module util.constants), 136
LPF2_STONE_GREY_MOTOR_LARGE (in module

util.constants), 136
LPF2_STONE_GREY_MOTOR_MEDIUM (in module

util.constants), 136

M
mac() (hub.bluetooth method), 70
machine

module, 32
machine.DEEPSLEEP_RESET (in module machine), 36
machine.HARD_RESET (in module machine), 36
machine.PWRON_RESET (in module machine), 36
machine.RTC (class in machine), 52
machine.SOFT_RESET (in module machine), 36
machine.WDT_RESET (in module machine), 36
map()

built-in function, 3
map_dirty() (in module programrunner), 97
mapper() (machine.Pin method), 40
match() (in module ure), 24
match() (ure.regex method), 25
math

module, 9
max()

built-in function, 3
maxsize (in module sys), 12
MCU, 146
mem16 (in module machine), 36
mem32 (in module machine), 36
mem8 (in module machine), 36
mem_alloc() (in module gc), 8
mem_free() (in module gc), 8
mem_info() (in module micropython), 56
MemoryError, 5
memoryview (built-in class), 3
micropython

module, 56
MicroPython port, 146
MicroPython Unix port, 146
micropython-lib, 146
min()

built-in function, 3
mindstorms

module, 97
mkdir() (in module uos), 20
mkfs() (uos.VfsLfs1 static method), 22
mktime() (in module utime), 28
mode() (hub.Port method), 66

208 Index

MicroPython Lego RI5 Documentation, Release 1.11

mode() (machine.Pin method), 39
modf() (in module math), 10
modify() (uselect.poll method), 26
module

_api, 73
_api.app, 85
_api.button, 81
_api.colorsensor, 76
_api.distancesensor, 73
_api.forcesensor, 75
_api.large_technic_hub, 86
_api.lightmatrix, 84
_api.motionsensor, 77
_api.motor, 79
_api.motorpair, 82
_api.speaker, 85
_api.statuslight, 79
_api.util, 84
_onewire, 64
array, 6
cmath, 7
commands, 88
commands.abstract_handler, 88
commands.hub_methods, 94
commands.light_methods, 90
commands.linegraphmonitor_methods, 88
commands.motor_methods, 93
commands.move_methods, 95
commands.program_methods, 91
commands.sound_methods, 89
commands.wait_methods, 94
event_loop, 96
firmware, 72
gc, 7
hub, 65
hub_runtime, 142
machine, 32
math, 9
micropython, 56
mindstorms, 97
programrunner, 97
protocol, 99
protocol.notifications, 99
protocol.rpc_protocol, 101
protocol.ujsonrpc, 101
runtime, 104
runtime.dirty_dict, 104
runtime.multimotor, 105
runtime.stack, 105
runtime.timer, 106
runtime.virtualmachine, 107
runtime.vm_store, 108
spike, 110
sys, 11

system, 110
system.abstractwrapper, 119
system.callbacks, 111
system.callbacks.customcallbacks, 111
system.display, 119
system.motors, 114
system.motorwrapper, 114
system.move, 117
system.movewrapper, 117
system.sound, 116
ubinascii, 13
ucollections, 14
uctypes, 58
uerrno, 15
uhashlib, 16
uheapq, 17
ui.hubui, 121
uio, 17
ujson, 19
uos, 19
urandom, 31
ure, 23
uselect, 25
ustruct, 27
util, 123
util.animations, 125
util.color, 124
util.constants, 136
util.error_handler, 133
util.log, 134
util.motor, 127
util.print_override, 135
util.resetter, 123
util.rotation, 141
util.schedule, 135
util.scratch, 127
util.sensors, 130
util.storage, 129
util.time, 132
utime, 27
utimeq, 63
uzlib, 31
version, 143

modules (in module sys), 12
Motion (class in hub), 68
motion (in module hub), 68
Motion.BACK (in module hub), 69
Motion.DOUBLETAPPED (in module hub), 69
Motion.DOWN (in module hub), 69
Motion.FREEFALL (in module hub), 69
Motion.FRONT (in module hub), 69
Motion.LEFTSIDE (in module hub), 69
Motion.NONE (in module hub), 69
Motion.RIGHTSIDE (in module hub), 69

Index 209

MicroPython Lego RI5 Documentation, Release 1.11

Motion.SHAKE (in module hub), 69
Motion.TAPPED (in module hub), 69
Motion.UP (in module hub), 69
motion_sensor (_api.large_technic_hub.LargeTechnicHub

property), 87
MotionSensor (class in _api.motionsensor), 78
MotionSensor.BACK (in module _api.motionsensor), 78
MotionSensor.DOUBLE_TAPPED (in module

_api.motionsensor), 78
MotionSensor.DOWN (in module _api.motionsensor), 78
MotionSensor.FALLING (in module

_api.motionsensor), 78
MotionSensor.FRONT (in module _api.motionsensor),

78
MotionSensor.LEFT_SIDE (in module

_api.motionsensor), 78
MotionSensor.RIGHT_SIDE (in module

_api.motionsensor), 78
MotionSensor.SHAKEN (in module _api.motionsensor),

78
MotionSensor.TAPPED (in module _api.motionsensor),

78
MotionSensor.UP (in module _api.motionsensor), 78
Motor (class in _api.motor), 80
Motor.BRAKE (in module _api.motor), 81
Motor.COAST (in module _api.motor), 81
Motor.HOLD (in module _api.motor), 81
motor_acceleration() (runtime.vm_store.VMStore

method), 109
motor_last_status() (runtime.vm_store.VMStore

method), 109
motor_speed() (runtime.vm_store.VMStore method),

109
motor_stall() (runtime.vm_store.VMStore method),

109
motor_stop() (runtime.vm_store.VMStore method), 109
MOTOR_TYPES (in module util.constants), 136
MotorMethods (class in commands.motor_methods), 93
MotorPair (class in _api.motorpair), 82
MotorPair.BRAKE (in module _api.motorpair), 83
MotorPair.CM (in module _api.motorpair), 83
MotorPair.COAST (in module _api.motorpair), 83
MotorPair.DEGREES (in module _api.motorpair), 83
MotorPair.HOLD (in module _api.motorpair), 83
MotorPair.IN (in module _api.motorpair), 83
MotorPair.ROTATIONS (in module _api.motorpair), 83
MotorPair.SECONDS (in module _api.motorpair), 83
Motors (class in system.motors), 114
Motors.wrappers (in module system.motors), 114
MotorWrapper (class in system.motorwrapper), 115
MotorWrapper.motor (in module sys-

tem.motorwrapper), 116
mount() (in module uos), 21
move() (_api.motorpair.MotorPair method), 83

move_acceleration() (runtime.vm_store.VMStore
method), 109

move_at_power() (system.movewrapper.MoveWrapper
method), 118

move_calibration() (runtime.vm_store.VMStore
method), 109

move_differential_speed() (sys-
tem.movewrapper.MoveWrapper method),
118

move_differential_speed_async() (sys-
tem.movewrapper.MoveWrapper method),
118

move_for_time() (system.movewrapper.MoveWrapper
method), 118

move_for_time_async() (sys-
tem.movewrapper.MoveWrapper method),
118

move_last_status() (runtime.vm_store.VMStore
method), 109

move_pair() (runtime.vm_store.VMStore method), 109
move_slot() (in module util.storage), 129
move_speed() (runtime.vm_store.VMStore method), 109
move_stop() (runtime.vm_store.VMStore method), 109
move_tank() (_api.motorpair.MotorPair method), 83
Movement (class in system.move), 117
Movement._pairs (in module system.move), 117
MoveMethods (class in commands.move_methods), 95
MoveWrapper (class in system.movewrapper), 118
MoveWrapper.pair (in module system.movewrapper),

118
mp_schedule() (in module util.schedule), 135
MSHub (class in mindstorms), 97
MultiMotor (class in runtime.multimotor), 105
music_instrument() (runtime.vm_store.VMStore

method), 109
music_tempo() (runtime.vm_store.VMStore method),

109

N
name() (machine.Pin method), 39
namedtuple() (in module ucollections), 14
NameError, 5
names() (machine.Pin method), 39
NATIVE (in module uctypes), 61
newSensorDisconnectedError() (in module

_api.util), 84
next()

built-in function, 4
NO_KEY (in module util.constants), 137
NO_RESPONSE (in module protocol.ujsonrpc), 102
NO_STATUS (in module util.constants), 138
note_to_frequency() (in module util.scratch), 127
notify_all_state() (programrunner.ProgramRunner

method), 98

210 Index

MicroPython Lego RI5 Documentation, Release 1.11

notify_battery_status() (in module proto-
col.notifications), 99

notify_button_event() (in module proto-
col.notifications), 100

notify_debug_event() (in module proto-
col.notifications), 100

notify_error_event() (in module proto-
col.notifications), 99

notify_gesture_event() (in module proto-
col.notifications), 99

notify_gesture_status() (in module proto-
col.notifications), 100

notify_info_status() (in module proto-
col.notifications), 100

notify_linegraph_timer_reset() (in module proto-
col.notifications), 100

notify_program_running() (in module proto-
col.notifications), 99

notify_sensor_data() (in module proto-
col.notifications), 99

notify_stack_start() (in module proto-
col.notifications), 99

notify_stack_stop() (in module proto-
col.notifications), 100

notify_storage_status() (in module proto-
col.notifications), 99

notify_vm_state() (in module protocol.notifications),
100

NotImplemented (built-in variable), 6
NotImplementedError, 5
NUMBER (in module util.constants), 137
number_to_color() (in module util.scratch), 127
number_to_orientation() (in module util.scratch),

127

O
object (built-in class), 4
oct()

built-in function, 4
off() (_api.lightmatrix.LightMatrix method), 84
off() (_api.statuslight.StatusLight method), 79
off() (machine.Pin method), 39
off() (machine.Signal method), 43
on() (_api.statuslight.StatusLight method), 79
on() (machine.Pin method), 39
on() (machine.Signal method), 43
on_change() (hub.Button method), 67
on_connection() (ui.hubui.HubUI method), 122
on_pair() (system.move.Movement method), 117
on_port() (system.motors.Motors method), 114
open()

built-in function, 4
open() (in module uio), 18
open_program() (in module util.storage), 129

opt_level() (in module micropython), 56
ord()

built-in function, 4
OrderedDict() (in module ucollections), 14
orientation() (hub.Motion method), 68
orientation_to_number() (in module util.scratch),

127
ORIENTATIONS (in module util.scratch), 128
OSError, 5
OverflowError, 5

P
pack() (in module ustruct), 27
pack_into() (in module ustruct), 27
PAIR_REGEX (in module util.scratch), 128
parse_buffer() (protocol.ujsonrpc.JSONRPC

method), 102
parse_chunk() (protocol.ujsonrpc.JSONRPC method),

102
partition_image_str() (in module util.scratch), 128
path (in module sys), 13
peektime() (utimeq.utimeq method), 63
percent_to_frequency() (in module util.scratch), 127
percent_to_int() (in module util.scratch), 127
phase() (in module cmath), 7
pi (in module cmath), 7
pi (in module math), 11
Pin (class in machine), 37
pin() (machine.Pin method), 39
pitch_to_freq() (in module util.scratch), 127
pixel() (hub.Display method), 67
pixel() (system.display.DisplayWrapper method), 120
platform (in module sys), 13
play() (hub.Sound method), 68
play() (system.sound.SoundWrapper method), 116
play_async() (system.sound.SoundWrapper method),

116
play_sound() (_api.app.App method), 86
polar() (in module cmath), 7
poll() (in module uselect), 26
poll() (uselect.poll method), 26
pop() (utimeq.utimeq method), 63
pop_force_reset() (in module util.storage), 129
popleft() (ucollections.deque method), 14
port, 146
Port (class in hub), 66
port (in module hub), 66
port() (machine.Pin method), 39
Port.A (in module hub), 66
Port.ATTACHED (in module hub), 66
Port.B (in module hub), 66
Port.C (in module hub), 66
Port.D (in module hub), 66
Port.DETACHED (in module hub), 66

Index 211

MicroPython Lego RI5 Documentation, Release 1.11

Port.E (in module hub), 66
Port.F (in module hub), 66
Port.MODE_DEFAULT (in module hub), 66
Port.MODE_FULL_DUPLEX (in module hub), 66
Port.MODE_GPIO (in module hub), 66
Port.MODE_HALF_DUPLEX (in module hub), 66
Port.motor (in module hub), 67
PortCallbacks (class in system.callbacks), 112
PORTS (in module util.constants), 137
position() (hub.Motion method), 68
pow()

built-in function, 4
pow() (in module math), 10
power_off() (in module hub), 65
preset() (system.motorwrapper.MotorWrapper

method), 116
preset_yaw() (hub.Motion method), 68
presses() (hub.Button method), 67
PrimeHub (class in spike), 110
print()

built-in function, 4
print_exception() (in module sys), 11
PROGRAM_EXECUTION_ERROR (in module

util.error_handler), 133
PROGRAM_EXECUTION_MEMORY_ERROR (in module

util.error_handler), 133
PROGRAM_TYPE_PYTHON (in module util.storage), 130
PROGRAM_TYPE_SCRATCH (in module util.storage), 130
ProgramMethods (class in com-

mands.program_methods), 91
programrunner

module, 97
ProgramRunner (class in programrunner), 98
ProgramRunner.IDLE (in module programrunner), 98
ProgramRunner.RUNNING_BLOCKING (in module pro-

gramrunner), 98
ProgramRunner.RUNNING_NONBLOCKING (in module

programrunner), 98
property (built-in class), 4
protocol

module, 99
protocol.notifications

module, 99
protocol.rpc_protocol

module, 101
protocol.ujsonrpc

module, 101
PTR (in module uctypes), 61
pull() (machine.Pin method), 39
push() (utimeq.utimeq method), 63
pwm() (hub.Port method), 66
pwm() (system.motorwrapper.MotorWrapper method),

115
pystack_use() (in module micropython), 57

Q
qstr_info() (in module micropython), 56

R
radians() (in module math), 10
randint() (in module urandom), 32
random() (in module urandom), 32
randrange() (in module urandom), 32
range()

built-in function, 4
read() (hub.BT_VCP method), 71
read() (machine.SPI method), 48
read() (machine.UART method), 46
read_local_name() (in module util.storage), 129
read_program() (in module util.storage), 129
read_u16() (in module machine), 44
readbit() (in module _onewire), 64
readblocks() (uos.AbstractBlockDev method), 22
readbyte() (in module _onewire), 64
readchar() (machine.UART method), 46
readfrom() (machine.I2C method), 51
readfrom_into() (machine.I2C method), 51
readfrom_mem() (machine.I2C method), 51
readfrom_mem_into() (machine.I2C method), 51
readinto() (hub.BT_VCP method), 71
readinto() (machine.I2C method), 50
readinto() (machine.SPI method), 48
readinto() (machine.UART method), 46
readline() (hub.BT_VCP method), 71
readline() (machine.UART method), 46
readlines() (hub.BT_VCP method), 71
rect() (in module cmath), 7
recv() (hub.BT_VCP method), 71
RED (in module util.color), 124
register() (system.callbacks.CallbackHandler

method), 113
register() (uselect.poll method), 26
register_callback() (run-

time.virtualmachine.VirtualMachine method),
107

register_method_handlers() (proto-
col.rpc_protocol.RPCProtocol method),
101

register_on_broadcast() (run-
time.virtualmachine.VirtualMachine method),
107

register_on_button() (run-
time.virtualmachine.VirtualMachine method),
107

register_on_condition() (run-
time.virtualmachine.VirtualMachine method),
107

register_on_gesture() (run-
time.virtualmachine.VirtualMachine method),

212 Index

MicroPython Lego RI5 Documentation, Release 1.11

107
register_on_start() (run-

time.virtualmachine.VirtualMachine method),
107

register_persistent() (sys-
tem.callbacks.CallbackHandler method),
113

register_port_callback_handlers() (sys-
tem.motors.Motors method), 114

register_ports() (in module util.sensors), 131
register_rpc_handlers() (sys-

tem.callbacks.ButtonCallbacks method),
112

register_single() (sys-
tem.callbacks.CallbackHandler method),
113

remove() (in module uos), 20
remove_task() (system.callbacks.customcallbacks.CustomSensorCallbackManager

method), 112
rename() (in module uos), 20
repl_reset() (util.resetter.RTTimer method), 123
repl_restart() (in module hub), 65
reply() (protocol.ujsonrpc.JSONRPC method), 102
repr()

built-in function, 4
reset() (in module _onewire), 64
reset() (in module machine), 32
reset() (in module runtime.timer), 106
reset() (in module ui.hubui), 121
reset() (system.callbacks.ButtonCallbacks method),

112
reset() (system.callbacks.CallbackHandler method),

113
reset() (system.callbacks.Callbacks method), 112
reset() (system.callbacks.PortCallbacks method), 112
reset() (system.System method), 111
reset_cause() (in module machine), 33
reset_time() (in module util.time), 132
reset_time() (runtime.virtualmachine.VirtualMachine

method), 107
reset_timer() (runtime.virtualmachine.VirtualMachine

method), 107
reset_to_default_mode() (in module util.sensors),

131
reset_yaw() (hub.Motion method), 68
reset_yaw_angle() (_api.motionsensor.MotionSensor

method), 78
restart() (runtime.stack.Stack method), 105
resume_suspended_msg() (proto-

col.ujsonrpc.JSONRPC method), 103
reversed()

built-in function, 4
rgb_percentage() (in module util.color), 124
right_button (_api.large_technic_hub.LargeTechnicHub

property), 87
rmdir() (in module uos), 20
rotate_hub_display() (in module util.rotation), 141
rotate_hub_display_to_orientation() (in module

util.rotation), 141
rotate_hub_display_to_value() (in module

util.rotation), 141
rotation() (hub.Display method), 67
round()

built-in function, 4
RPCProtocol (class in protocol.rpc_protocol), 101
rssi() (hub.bluetooth method), 70
RTTimer (class in util.resetter), 123
run() (runtime.multimotor.MultiMotor method), 105
run_at_speed() (system.motorwrapper.MotorWrapper

method), 115
run_at_speed_async() (sys-

tem.motorwrapper.MotorWrapper method),
115

run_for_degrees() (_api.motor.Motor method), 80
run_for_degrees() (sys-

tem.motorwrapper.MotorWrapper method),
115

run_for_degrees_async() (sys-
tem.motorwrapper.MotorWrapper method),
115

run_for_rotations() (_api.motor.Motor method), 80
run_for_seconds() (_api.motor.Motor method), 80
run_for_time() (system.motorwrapper.MotorWrapper

method), 115
run_for_time_async() (sys-

tem.motorwrapper.MotorWrapper method),
115

run_forever() (event_loop.EventLoop method), 96
run_to_degrees_counted() (_api.motor.Motor

method), 80
run_to_position() (_api.motor.Motor method), 80
run_to_position() (sys-

tem.motorwrapper.MotorWrapper method),
115

run_to_position_async() (sys-
tem.motorwrapper.MotorWrapper method),
115

run_to_relative_position() (sys-
tem.motorwrapper.MotorWrapper method),
115

run_to_relative_position_async() (sys-
tem.motorwrapper.MotorWrapper method),
115

runtime
module, 104

runtime.dirty_dict
module, 104

runtime.multimotor

Index 213

MicroPython Lego RI5 Documentation, Release 1.11

module, 105
runtime.stack

module, 105
runtime.timer

module, 106
runtime.virtualmachine

module, 107
runtime.vm_store

module, 108
RuntimeError, 5

S
sanitize() (in module system.display), 120
sanitize_movement_ports() (in module util.scratch),

127
sanitize_ports() (in module util.scratch), 127
scan() (hub.bluetooth method), 70
scan() (machine.I2C method), 50
scan_result() (hub.bluetooth method), 70
schedule() (in module micropython), 57
schedule_coroutine() (run-

time.virtualmachine.VirtualMachine method),
107

search() (in module ure), 24
search() (ure.regex method), 25
seed() (in module urandom), 32
select() (in module uselect), 26
send() (hub.BT_VCP method), 71
sendbreak() (machine.UART method), 46
sensor_data (in module util.sensors), 131
sep (in module uos), 20
set (built-in class), 4
set_default_speed() (_api.motor.Motor method), 80
set_default_speed() (_api.motorpair.MotorPair

method), 82
set_degrees_counted() (_api.motor.Motor method),

80
set_display_sync() (in module util.sensors), 131
set_force_reset() (in module util.storage), 129
set_motor_rotation() (_api.motorpair.MotorPair

method), 82
set_pixel() (_api.lightmatrix.LightMatrix method), 84
set_pixel() (util.constants.Image method), 138
set_stall_detection() (_api.motor.Motor method),

80
set_stop_action() (_api.motor.Motor method), 80
set_stop_action() (_api.motorpair.MotorPair

method), 82
set_volume() (_api.speaker.Speaker method), 85
setattr()

built-in function, 4
setinterrupt() (hub.BT_VCP method), 71
setitem() (runtime.dirty_dict.DirtyDict method), 104
setup_vm() (in module programrunner), 97

shift_down() (util.constants.Image method), 139
shift_in_from_bottom() (in module util.animations),

125
shift_in_from_bottom_left() (in module

util.animations), 125
shift_in_from_left() (in module util.animations),

125
shift_in_from_right() (in module util.animations),

125
shift_in_from_top() (in module util.animations), 125
shift_in_from_top_right() (in module

util.animations), 125
shift_left() (in module util.animations), 125
shift_left() (util.constants.Image method), 138
shift_out_to_bottom() (in module util.animations),

125
shift_out_to_left() (in module util.animations), 125
shift_out_to_right() (in module util.animations),

125
shift_out_to_top() (in module util.animations), 125
shift_right() (in module util.animations), 125
shift_right() (util.constants.Image method), 139
shift_up() (util.constants.Image method), 139
should_start() (runtime.stack.Stack method), 105
show() (hub.Display method), 67
show() (system.display.DisplayWrapper method), 120
show_async() (system.display.DisplayWrapper

method), 120
show_frames() (commands.light_methods.LightMethods

method), 90
show_image() (_api.lightmatrix.LightMatrix method),

84
shutdown() (runtime.virtualmachine.VirtualMachine

method), 107
shutdown_animation() (in module util.animations),

125
SHUTDOWN_FRAMES (in module util.animations), 126
Signal (class in machine), 42
sin() (in module cmath), 7
sin() (in module math), 10
sinh() (in module math), 10
sizeof() (in module uctypes), 61
sleep() (in module machine), 34
sleep() (in module utime), 28
sleep_ms() (in module utime), 28
sleep_us() (in module utime), 28
slice (built-in class), 4
SLOTS_IMAGE (in module ui.hubui), 121
SLOTS_IMAGE (in module util.constants), 137
soft_reset() (in module machine), 32
sorted()

built-in function, 4
Sound (class in hub), 67
sound (in module hub), 67

214 Index

MicroPython Lego RI5 Documentation, Release 1.11

Sound.SOUND_SAWTOOTH (in module hub), 68
Sound.SOUND_SIN (in module hub), 68
Sound.SOUND_SQUARE (in module hub), 68
Sound.SOUND_TRIANGLE (in module hub), 68
sound_pan() (runtime.vm_store.VMStore method), 109
sound_pitch() (runtime.vm_store.VMStore method),

109
sound_volume() (runtime.vm_store.VMStore method),

109
SoundMethods (class in commands.sound_methods), 89
Sounds (class in util.constants), 138
Sounds.NAVIGATION (in module util.constants), 138
Sounds.NAVIGATION_FAST (in module util.constants),

138
Sounds.PROGRAM_START (in module util.constants), 138
Sounds.PROGRAM_STOP (in module util.constants), 138
Sounds.SHUTDOWN (in module util.constants), 138
Sounds.STARTUP (in module util.constants), 138
SoundWrapper (class in system.sound), 116
speaker (_api.large_technic_hub.LargeTechnicHub

property), 87
Speaker (class in _api.speaker), 85
SPI (class in machine), 47
spike

module, 110
spikeprint()

built-in function, 4
spikeprint() (in module util.print_override), 135
split() (ure.regex method), 25
sqrt() (in module cmath), 7
sqrt() (in module math), 10
Stack (class in runtime.stack), 105
Stack.ON_BROADCAST (in module runtime.stack), 106
Stack.ON_BUTTON (in module runtime.stack), 106
Stack.ON_CONDITION (in module runtime.stack), 106
Stack.ON_GESTURE (in module runtime.stack), 106
Stack.ON_START (in module runtime.stack), 106
Stack.STATUS_IDLE (in module runtime.stack), 106
Stack.STATUS_WAITING (in module runtime.stack), 106
stack_use() (in module micropython), 56
STALLED (in module util.constants), 138
start() (_api.motor.Motor method), 80
start() (_api.motorpair.MotorPair method), 82
start() (in module hub_runtime), 142
start() (machine.I2C method), 50
start() (runtime.stack.Stack method), 105
start() (runtime.virtualmachine.VirtualMachine

method), 108
start() (util.resetter.RTTimer method), 123
start_at_power() (_api.motor.Motor method), 80
start_at_power() (_api.motorpair.MotorPair

method), 82
start_at_powers() (sys-

tem.movewrapper.MoveWrapper method),

118
start_at_speeds() (sys-

tem.movewrapper.MoveWrapper method),
118

start_beep() (_api.speaker.Speaker method), 85
start_notify_loop() (programrun-

ner.ProgramRunner method), 98
start_program() (programrunner.ProgramRunner

method), 98
start_program() (ui.hubui.HubUI method), 122
start_sound() (_api.app.App method), 86
start_tank() (_api.motorpair.MotorPair method), 82
start_tank_at_power() (_api.motorpair.MotorPair

method), 83
START_TIME (in module runtime.timer), 107
start_time() (in module util.time), 132
stat() (in module uos), 20
staticmethod()

built-in function, 4
status() (in module hub), 65
status_light (_api.large_technic_hub.LargeTechnicHub

property), 86
StatusLight (class in _api.statuslight), 79
statvfs() (in module uos), 20
stderr (in module sys), 13
stdin (in module sys), 13
stdout (in module sys), 13
step() (event_loop.EventLoop method), 96
stop() (_api.motor.Motor method), 80
stop() (_api.motorpair.MotorPair method), 83
stop() (_api.speaker.Speaker method), 85
stop() (machine.I2C method), 50
stop() (runtime.stack.Stack method), 105
stop() (system.motorwrapper.MotorWrapper method),

115
stop() (system.movewrapper.MoveWrapper method),

118
stop_all() (programrunner.ProgramRunner method),

98
stop_all() (ui.hubui.HubUI method), 122
stop_stacks() (runtime.virtualmachine.VirtualMachine

method), 107
stop_time() (in module util.time), 132
StopAsyncIteration, 5
StopIteration, 5
str (built-in class), 4
stream, 146
stream (protocol.rpc_protocol.RPCProtocol property),

101
stream (protocol.ujsonrpc.JSONRPC property), 103
streaming_animation() (in module util.animations),

125
STRING (in module util.constants), 137
StringIO (class in uio), 18

Index 215

MicroPython Lego RI5 Documentation, Release 1.11

struct (class in uctypes), 61
sub() (in module ure), 24
sub() (ure.regex method), 25
SUCCESS (in module util.constants), 137
sum()

built-in function, 4
sum_list_len() (in module programrunner), 97
super()

built-in function, 4
supervision (class in hub), 71
supervision (in module hub), 71
suspend_current_message() (proto-

col.ujsonrpc.JSONRPC method), 102
sync() (in module uos), 21
SyntaxError, 5
sys

module, 11
system

module, 110
System (class in system), 111
system (in module system), 110
system.abstractwrapper

module, 119
system.callbacks

module, 111
system.callbacks.customcallbacks

module, 111
system.display

module, 119
system.motors

module, 114
system.motorwrapper

module, 114
system.move

module, 117
system.movewrapper

module, 117
system.sound

module, 116
SystemExit, 5

T
tan() (in module math), 10
tan() (in module util.scratch), 128
tanh() (in module math), 10
temperature() (hub.Battery method), 69
temperature() (in module hub), 65
TextIOWrapper (class in uio), 18
threshold() (in module gc), 8
ticks_add() (in module utime), 29
ticks_cpu() (in module utime), 29
ticks_diff() (in module utime), 29
ticks_ms() (in module utime), 28
ticks_us() (in module utime), 29

time() (in module utime), 30
time_pulse_us() (in module machine), 35
timed_fn_buffer (in module util.log), 135
timed_function() (in module util.log), 134
Timer (class in machine), 53
TIMER_PACE_HIGH (in module util.constants), 137
TIMER_PACE_LOW (in module util.constants), 137
to_boolean() (in module util.scratch), 127
to_bytes() (int method), 3
to_number() (in module util.scratch), 127
trunc() (in module math), 10
tuple (built-in class), 4
type (built-in class), 4
TypeError, 5

U
UART (class in machine), 45
ubinascii

module, 13
ucollections

module, 14
uctypes

module, 58
uerrno

module, 15
uhashlib

module, 16
uhashlib.sha256 (class in uhashlib), 16
uheapq

module, 17
ui.hubui

module, 121
UINT16 (in module uctypes), 61
UINT32 (in module uctypes), 61
UINT64 (in module uctypes), 61
UINT8 (in module uctypes), 61
uio

module, 17
ujson

module, 19
umount() (in module uos), 22
uname() (in module uos), 19
unhexlify() (in module ubinascii), 13
UnicodeError, 5
uniform() (in module urandom), 32
unique_id() (in module machine), 35
unpack() (in module ustruct), 27
unpack_from() (in module ustruct), 27
unpair() (system.movewrapper.MoveWrapper method),

118
unregister() (uselect.poll method), 26
until() (system.callbacks.customcallbacks.CustomSensorCallbackManager

method), 111

216 Index

MicroPython Lego RI5 Documentation, Release 1.11

until_changed() (sys-
tem.callbacks.customcallbacks.CustomSensorCallbackManager
method), 111

until_force_bumped() (sys-
tem.callbacks.customcallbacks.CustomSensorCallbackManager
method), 111

until_less_than() (sys-
tem.callbacks.customcallbacks.CustomSensorCallbackManager
method), 111

untuple_vm_vars() (in module programrunner), 97
uos

module, 19
update() (uhashlib.hash method), 16
update_battery_status() (in module util.sensors),

131
update_sensor_data() (in module util.sensors), 131
upip, 146
urandom

module, 31
ure

module, 23
USB_VCP (class in hub), 72
USB_VCP (in module hub), 72
USB_VCP (in module util.constants), 137
USB_VCP.CTS (in module hub), 72
USB_VCP.RTS (in module hub), 72
uselect

module, 25
user_interaction() (in module ui.hubui), 121
ustruct

module, 27
util

module, 123
util.animations

module, 125
util.color

module, 124
util.constants

module, 136
util.error_handler

module, 133
util.log

module, 134
util.motor

module, 127
util.print_override

module, 135
util.resetter

module, 123
util.rotation

module, 141
util.schedule

module, 135
util.scratch

module, 127
util.sensors

module, 130
util.storage

module, 129
util.time

module, 132
utime

module, 27
utimeq

module, 63
utimeq (class in utimeq), 63
uzlib

module, 31

V
value() (machine.Pin method), 38
value() (machine.Signal method), 43
ValueError, 5
VAR_DEFAULTS (in module util.constants), 137
version

module, 143
version (in module sys), 13
version_info (in module sys), 13
VfsLfs1 (class in uos), 22
VIOLET (in module util.color), 124
VirtualMachine (class in runtime.virtualmachine), 107
vm_has_extension() (programrunner.ProgramRunner

method), 98
VMStore (class in runtime.vm_store), 109
VOID (in module uctypes), 61
voltage() (hub.Battery method), 69
volume() (hub.Sound method), 67

W
wait_for_async() (in module _api.util), 84
wait_for_distance_closer_than()

(_api.distancesensor.DistanceSensor method),
74

wait_for_distance_farther_than()
(_api.distancesensor.DistanceSensor method),
74

wait_for_new_color() (_api.colorsensor.ColorSensor
method), 77

wait_for_new_gesture()
(_api.motionsensor.MotionSensor method),
78

wait_for_new_orientation()
(_api.motionsensor.MotionSensor method),
78

wait_until_changed() (sys-
tem.callbacks.customcallbacks.CustomSensorCallbackManager
method), 111

Index 217

MicroPython Lego RI5 Documentation, Release 1.11

wait_until_color() (_api.colorsensor.ColorSensor
method), 77

wait_until_force_bumped() (sys-
tem.callbacks.customcallbacks.CustomSensorCallbackManager
method), 111

wait_until_less_than() (sys-
tem.callbacks.customcallbacks.CustomSensorCallbackManager
method), 111

wait_until_pressed() (_api.button.Button method),
81

wait_until_pressed() (_api.forcesensor.ForceSensor
method), 75

wait_until_ready_after_restart() (in module
util.resetter), 123

wait_until_released() (_api.button.Button method),
81

wait_until_released()
(_api.forcesensor.ForceSensor method),
75

WaitMethods (class in commands.wait_methods), 95
wakeup() (machine.RTC method), 52
was_gesture() (_api.motionsensor.MotionSensor

method), 78
was_gesture() (hub.Motion method), 68
was_interrupted() (_api.motor.Motor method), 80
was_interrupted() (_api.motorpair.MotorPair

method), 83
was_pressed() (_api.button.Button method), 81
was_pressed() (hub.Button method), 67
was_stalled() (_api.motor.Motor method), 80
WDT (class in machine), 55
weather_location() (runtime.vm_store.VMStore

method), 109
weather_offset() (runtime.vm_store.VMStore

method), 110
WHITE (in module util.color), 124
width() (util.constants.Image method), 138
will_stop_restart() (ui.hubui.HubUI method), 122
wrap_clamp() (in module util.scratch), 128
write() (_api.lightmatrix.LightMatrix method), 84
write() (hub.BT_VCP method), 71
write() (machine.I2C method), 50
write() (machine.SPI method), 48
write() (machine.UART method), 46
write() (system.display.DisplayWrapper method), 120
write_async() (system.display.DisplayWrapper

method), 120
write_local_name() (in module util.storage), 129
write_readinto() (machine.SPI method), 48
writebit() (in module _onewire), 64
writeblocks() (uos.AbstractBlockDev method), 22
writebyte() (in module _onewire), 64
writechar() (machine.UART method), 46
writeto() (machine.I2C method), 51

writeto_mem() (machine.I2C method), 51
writevto() (machine.I2C method), 51

Y
YELLOW (in module util.color), 124

Z
ZeroDivisionError, 5
zip()

built-in function, 4

218 Index

	MicroPython libraries
	Python standard libraries and micro-libraries
	Builtin functions and exceptions
	Functions and types
	Exceptions
	Constants

	array – arrays of numeric data
	Classes

	cmath – mathematical functions for complex numbers
	Functions
	Constants

	gc – control the garbage collector
	Functions

	math – mathematical functions
	Functions
	Constants

	sys – system specific functions
	Functions
	Constants

	ubinascii – binary/ASCII conversions
	Functions

	ucollections – collection and container types
	Classes

	uerrno – system error codes
	Constants

	uhashlib – hashing algorithms
	Constructors
	Methods

	uheapq – heap queue algorithm
	Functions

	uio – input/output streams
	Conceptual hierarchy
	Functions
	Classes

	ujson – JSON encoding and decoding
	Functions

	uos – basic “operating system” services
	General functions
	Constants
	Filesystem access
	Terminal redirection and duplication
	Filesystem mounting
	Block devices

	ure – simple regular expressions
	Functions
	Regex objects
	Match objects

	uselect – wait for events on a set of streams
	Functions
	class Poll
	Methods

	ustruct – pack and unpack primitive data types
	Functions

	utime – time related functions
	Functions

	uzlib – zlib decompression
	Functions

	urandom – random number generation
	Functions

	MicroPython-specific libraries
	machine — functions related to the hardware
	Reset related functions
	Interrupt related functions
	Power related functions
	Miscellaneous functions
	Memory Access
	Constants
	Classes
	class Pin – control I/O pins
	Constructors
	Methods
	Class methods
	Classes
	Constants

	class Signal – control and sense external I/O devices
	Constructors
	Methods

	class ADC – analog to digital conversion
	Constructors
	Methods
	Constants
	Other Experiments

	class UART – duplex serial communication bus
	Constructors
	Methods
	Constants

	class SPI – a Serial Peripheral Interface bus protocol (master side)
	Constructors
	Methods
	Constants

	class I2C – a two-wire serial protocol
	Constructors
	I2C ids on the RI5
	General Methods
	Primitive I2C operations
	Standard bus operations
	Memory operations

	class RTC – real time clock
	Constructors
	Methods

	class Timer – control hardware timers
	Constructors
	Methods
	Constants

	class WDT – watchdog timer
	Constructors
	Methods

	Classes from default Micropython not present on the Hub

	micropython – access and control MicroPython internals
	Functions

	uctypes – access binary data in a structured way
	Defining structure layout
	Module contents
	Structure descriptors and instantiating structure objects
	Structure objects
	Limitations

	utimeq – heap queue with times
	Classes

	_onewire – OneWire Protocol
	Functions

	MicroPython default libraries unavailable
	Libraries specific to the Technic Hub
	hub – hub brick functionality
	Constants
	Functions
	Imports
	Objects and Classes

	firmware – Firmware information and loading
	Functions

	_api – user API
	Submodules
	_api.distancesensor – distance sensor functions API
	DistanceSensor Class
	Imports

	_api.forcesensor – force sensor functions API
	Functions
	ForceSensor Class
	Imports

	_api.colorsensor – color sensor functions API
	Functions
	Constants
	ColorSensor Class
	Imports

	_api.motionsensor – motion sensor functions API
	MotionSensor Class
	Imports

	_api.statuslight – status light functions API
	Constants
	StatusLight Class
	Imports

	_api.motor – motor functions API
	Functions
	Motor Class
	Imports

	_api.button – button functions API
	Button Class

	_api.motorpair – paired motor functions API
	Functions
	Constants
	MotorPair Class
	Imports

	_api.lightmatrix – 5x5 display functions API
	LightMatrix Class
	Imports

	_api.util – utility functions for the API code
	Functions
	Imports

	_api.speaker – speaker functions API
	Speaker Class
	Imports

	_api.app – application functions API
	Constants
	App Class
	Imports

	_api.large_technic_hub – central hub API
	LargeTechnicHub Class
	Imports

	commands – commands module
	Submodules
	commands.abstract_handler – base class for handler classes
	AbstractHandler Class

	commands.linegraphmonitor_methods – ???
	LinegraphMonitorMethods Class
	Imports

	commands.sound_methods – ???
	SoundMethods Class
	Imports

	commands.light_methods – ???
	LightMethods Class
	Imports

	commands.program_methods – ???
	Constants
	ProgramMethods Class
	Imports

	commands.motor_methods – ???
	MotorMethods Class
	Imports

	commands.hub_methods – ???
	HubMethods Class
	Imports

	commands.wait_methods – ???
	WaitMethods Class
	Imports

	commands.move_methods – ???
	MoveMethods Class
	Imports

	event_loop – event_loop module
	Functions
	Constants
	Class EventLoop
	Imports

	mindstorms – Mindstorms branding of the user API
	Classes

	programrunner – run user programs
	Functions
	Constants
	Class ProgramRunner
	Imports

	protocol – RI5 communication protocol
	Submodules
	protocol.notifications – ???
	Functions
	Constants
	Imports

	protocol.rpc_protocol – ???
	RPCProtocol Class
	Imports

	protocol.ujsonrpc – ???
	Constants
	JSONRPC Class
	Imports

	runtime – runtime module
	Submodules
	runtime.dirty_dict – ???
	DirtyDict Class

	runtime.multimotor – ???
	MultiMotor Class

	runtime.stack – ???
	Stack Class
	Imports

	runtime.timer – ???
	Functions
	Constants
	Imports

	runtime.virtualmachine – ???
	VirtualMachine Class
	Imports

	runtime.vm_store – ???
	Functions
	Constants
	VMStore Class
	Imports

	spike – Spike Prime branding of the user API
	Classes

	system – system module
	Constants
	System Class
	Submodules
	system.callbacks – ???
	Submodules
	system.callbacks.customcallbacks – ???
	Classes
	Imports
	Classes
	Imports

	system.motors – ???
	Constants
	Motors Class
	Imports

	system.motorwrapper – ???
	Functions
	MotorWrapper Class
	Imports

	system.sound – ???
	SoundWrapper Class
	Imports

	system.move – ???
	Movement Class
	Imports

	system.movewrapper – ???
	Functions
	MoveWrapper Class
	Imports

	system.abstractwrapper – ???
	AbstractWrapper Class
	Imports

	system.display – ???
	Functions
	DisplayWrapper Class
	Imports

	Imports

	ui.hubui – menu system
	Functions
	Variables
	Constants
	Class HubUI
	Imports

	util – misc utility module
	Submodules
	util.resetter – resetting utility module
	Functions
	Variables
	RTTimer Class
	Imports

	util.color – color utility module
	Functions
	Constants

	util.animations – animation utility module
	Functions
	Constants
	Imports

	util.motor – motor utility module
	Functions

	util.scratch – scratch utility module
	Functions
	Constants
	Imports

	util.storage – storage utility module
	Functions
	Constants
	Imports

	util.sensors – sensors utility module
	Functions
	Variables
	Constants
	Imports

	util.time – time utility module
	Functions
	Variables
	Imports

	util.error_handler – error handling utility module
	Constants
	ErrorHandler Class
	Imports

	util.log – log utility module
	Functions
	Constants
	Variables
	Imports

	util.schedule – scheduling utility module
	Functions
	Imports

	util.print_override – remote printing module
	Functions
	Constants
	Imports

	util.constants – constants module
	Constants
	Sounds Class
	Image Class
	Imports

	util.rotation – rotation utility module
	Functions
	Variables
	Imports

	hub_runtime – Hub main module
	Functions
	Imports

	version – version module
	Constants

	The MicroPython language
	Glossary
	The MicroPython Interactive Interpreter Mode (aka REPL)
	Auto-indent
	Auto-completion
	Interrupting a running program
	Paste Mode
	Soft Reset
	The special variable _ (underscore)
	Raw Mode

	Writing interrupt handlers
	Tips and recommended practices
	MicroPython Issues
	The emergency exception buffer
	Simplicity
	Communication between an ISR and the main program
	The use of object methods as callbacks
	Creation of Python objects
	Use of Python objects
	Overcoming the float limitation
	Using micropython.schedule

	Exceptions
	General Issues
	Interrupt Handler Design
	Reentrancy
	Critical Sections
	Interrupts and the REPL

	Maximising MicroPython Speed
	Designing for speed
	Algorithms
	RAM Allocation
	Buffers
	Floating Point
	Arrays

	Identifying the slowest section of code
	MicroPython code improvements
	The const() declaration
	Caching object references
	Controlling garbage collection

	The Native code emitter
	The Viper code emitter
	Accessing hardware directly

	MicroPython on Microcontrollers
	Flash Memory
	RAM
	Compilation Phase
	Execution Phase

	The Heap
	Fragmentation
	Reporting
	Control of Garbage Collection

	String Operations
	Postscript
	Footnote: gc.collect() return value

	Distribution packages, package management, and deploying applications
	Overview
	Distribution packages
	upip package manager
	Cross-installing packages
	Cross-installing packages with freezing
	Creating distribution packages
	Application resources
	References

	Inline Assembler for Thumb2 architectures
	Document conventions
	Instruction Categories
	Register move instructions
	Document conventions
	Register moves

	Load register from memory
	Document conventions
	Register Load

	Store register to memory
	Document conventions
	Register Store

	Logical & Bitwise instructions
	Document conventions
	Logical instructions
	Shift and rotation instructions
	Special instructions

	Arithmetic instructions
	Document conventions
	Addition
	Subtraction
	Negation
	Multiplication and division

	Comparison instructions
	Document conventions
	The Application Program Status Register (APSR)
	APSR Bits
	Comparison instructions
	Conditional execution

	Branch instructions
	Document conventions
	Branch to label
	Long branches
	Subroutines (functions)

	Stack push and pop
	Document conventions
	Stack operations

	Miscellaneous instructions
	Floating Point instructions
	Document conventions
	Arithmetic
	Move between ARM core and FPU registers
	Move between FPU register and memory
	Data Comparison
	Convert between integer and float

	Assembler Directives
	Labels
	Defining inline data

	Usage examples
	Hints and tips
	Code branches and subroutines
	Argument passing and return
	Multiple arguments
	Non-integer data types

	Named constants
	Assembler code as class methods
	Use of unsupported instructions
	Overcoming MicroPython’s integer restriction

	References

	Developing and building MicroPython
	MicroPython external C modules
	Structure of an external C module
	Basic Example
	Compiling the cmodule into MicroPython
	Module usage in MicroPython

	MicroPython license information
	Python Module Index
	Index

