

 MicroPython Lego RI5 documentation

 Welcome! This is the documentation for the Lego Spike Prime/RI5 Hub MicroPython
 a fork of v1.11. It was last updated 20 May 2021.

 This is a fork of the Micropython documentation to document the particular details of
 the language as it exists in the Hub firmware. (Version) Here you can read
 the general Micropython documentation which applies to all systems, as well as specific information
 about the particular ports
 for the Technic Hub.

 General documentation for MicroPython:

 	

 Library Reference

 MicroPython libraries and modules

 MicroPython Differences

 MicroPython operations which differ from CPython

 	

 Language Reference

 information about MicroPython specific language features

 License

 MicroPython license information

 Indices and tables:

 	

 Module index

 quick access to all modules

 Full index

 all functions, classes, constants

 	

 Glossary

 MicroPython terms explained

 Table of contents

 a list of all sections and subsections

 External links:

 	

 MicroPython homepage

 the official MicroPython site

 MicroPython forum

 community discussion for all things related to MicroPython

 	

 MicroPython on GitHub

 contribute to the main Micropython source code on GitHub

 MicroPython on GitHub

 contribute to documenting the Micropython RI5 port on GitHub

MicroPython libraries

Warning

Important summary of this section

	MicroPython implements a subset of Python functionality for each module.

	To ease extensibility, MicroPython versions of standard Python modules
usually have u (“micro”) prefix.

	Additions/deletions/modifications from the base Micropython version are
indicated within the document.

This chapter describes modules (function and class libraries) which are built
into MicroPython. There are a few categories of such modules:

	Modules which implement a subset of standard Python functionality and are not
intended to be extended by the user.

	Modules which implement a subset of Python functionality, with a provision
for extension by the user (via Python code).

	Modules which implement MicroPython extensions to the Python standard libraries.

	Modules specific to this particular MicroPython port and thus not portable.

Note about the availability of the modules and their contents: This documentation
in general aspires to describe all modules and functions/classes which are
implemented in MicroPython project. However, MicroPython is highly configurable, and
each port to a particular board/embedded system makes available only a subset
of MicroPython libraries. For officially supported ports, there is an effort
to either filter out non-applicable items, or mark individual descriptions
with “Availability:” clauses describing which ports provide a given feature.

You are able to discover the available, built-in libraries that can be
imported by entering the following at the REPL:

help('modules')

Beyond the built-in libraries described in this documentation, many more
modules from the Python standard library, as well as further MicroPython
extensions to it, can be found in micropython-lib.

Python standard libraries and micro-libraries

The following standard Python libraries have been “micro-ified” to fit in with
the philosophy of MicroPython. They provide the core functionality of that
module and are intended to be a drop-in replacement for the standard Python
library. Some modules below use a standard Python name, but prefixed with “u”,
e.g. ujson instead of json. This is to signify that such a module is
micro-library, i.e. implements only a subset of CPython module functionality.
By naming them differently, a user has a choice to write a Python-level module
to extend functionality for better compatibility with CPython (indeed, this is
what done by the micropython-lib project mentioned above).

In the RI5 port, since it may be cumbersome to add Python-level
wrapper modules to achieve naming compatibility with CPython, micro-modules
are available both by their u-name, and also by their non-u-name. The
non-u-name can be overridden by a file of that name in your library path (sys.path).
For example, import json will first search for a file json.py (or package
directory json) and load that module if it is found. If nothing is found,
it will fallback to loading the built-in ujson module.

	Builtin functions and exceptions

	array – arrays of numeric data

	cmath – mathematical functions for complex numbers

	gc – control the garbage collector

	math – mathematical functions

	sys – system specific functions

	ubinascii – binary/ASCII conversions

	ucollections – collection and container types

	uerrno – system error codes

	uhashlib – hashing algorithms

	uheapq – heap queue algorithm

	uio – input/output streams

	ujson – JSON encoding and decoding

	uos – basic “operating system” services

	ure – simple regular expressions

	uselect – wait for events on a set of streams

	ustruct – pack and unpack primitive data types

	utime – time related functions

	uzlib – zlib decompression

These libraries do exist in MicroPython, but aren’t in the base docs.

	urandom – random number generation

MicroPython-specific libraries

Functionality specific to the MicroPython implementation is available in
the following libraries.

	machine — functions related to the hardware

	micropython – access and control MicroPython internals

	uctypes – access binary data in a structured way

These libraries do exist in MicroPython, but aren’t in the base docs.

	utimeq – heap queue with times

	_onewire – OneWire Protocol

MicroPython default libraries unavailable

Some default MicroPython functionality is missing from the Hub:

	usocket

	ussl

	_thread

	btree

	framebuf

	network

	ucryptolib

And some undocumented MicroPython modules that aren’t in RI5:

	bluetooth

	lwip

	uasyncio (but note that the RI5 does have the async keyword)

	uwebsocket

	webrepl

Libraries specific to the Technic Hub

Difference for RI5

The following libraries are not found in default MicroPython. As such,
documentation is mainly based on experimentation and internet sources
since no code sources are available.

The following libraries are specific to the Technic Hub and are built into its Micropython.

	hub – hub brick functionality

	firmware – Firmware information and loading

The following libraries are specific to the Technic Hub and are found in its filesystem.

	_api – user API

	commands – commands module

	event_loop – event_loop module

	mindstorms – Mindstorms branding of the user API

	programrunner – run user programs

	protocol – RI5 communication protocol

	runtime – runtime module

	spike – Spike Prime branding of the user API

	system – system module

	ui.hubui – menu system

	util – misc utility module

	hub_runtime – Hub main module

	version – version module

File main.py is also found in the filesystem, but do not import it as it will
restart the hub and require a battery removal/reinsert to get the hub working
again! You can technically “import” boot, projects, sounds, extra_files, but
by default they’re empty of Python content so they do nothing.

Builtin functions and exceptions

All builtin functions and exceptions are described here. They are also
available via builtins module.

Functions and types

	
abs()

	

	
all()

	

	
any()

	

	
bin()

	

	
class bool

	

	
class bytearray

	
Difference for RI5

As with the array class, in RI5 this has methods append(), extend()
and decode() that isn’t in standard Micropython.

	
class bytes

	See CPython documentation: bytes [https://docs.python.org/3.5/library/functions.html#bytes].

It’s missing a lot of the more complicated or specialized functions of that
class though.

	
callable()

	

	
chr()

	

	
classmethod()

	

	
compile()

	

	
class complex

	

	
delattr(obj, name)

	The argument name should be a string, and this function deletes the named
attribute from the object given by obj.

	
class dict

	

	
dir()

	

	
divmod()

	

	
enumerate()

	

	
eval()

	

	
exec()

	

	
execfile()

	Not in Python 3, but it does show up in Micropython.

	
filter()

	

	
class float

	In MicroPython, this class doesn’t have any methods.

	
class frozenset

	

	
getattr()

	

	
globals()

	

	
hasattr()

	

	
hash()

	

	
help()

	

	
hex()

	

	
id()

	

Difference for RI5

The input() function has been removed in RI5 - not unreasonably!

	
class int

	
	
classmethod from_bytes(bytes, byteorder)

	In MicroPython, byteorder parameter must be positional (this is
compatible with CPython).

	
to_bytes(size, byteorder)

	In MicroPython, byteorder parameter must be positional (this is
compatible with CPython).

	
isinstance()

	

	
issubclass()

	

	
iter()

	

	
len()

	

	
class list

	

	
locals()

	

	
map()

	

	
max()

	

	
class memoryview

	In MicroPython, this doesn’t have any methods and can only be used with
indices and slicing.

	
min()

	

	
next()

	

	
class object

	

	
oct()

	

	
open(file, mode='r', buffering=- 1, encoding=None)

	On RI5, this allows one to four arguments, so not as many as the corresponding
CPython function.

	
ord()

	

	
pow()

	

	
print()

	
Difference for RI5

On the RI5, this function has been overwritten by an alias to a new
builtin spikeprint()

	
class property

	

	
range()

	

	
repr()

	

	
reversed()

	

	
round()

	

	
class set

	

	
setattr()

	

	
class slice

	The slice builtin is the type that slice objects have.

	
sorted()

	

	
spikeprint()

	
Difference for RI5

A new function that overwrites print(), presumably so that print
responses can be successfully sent back over the link to the controlling
app.

	
staticmethod()

	

	
class str

	See CPython documentation: str [https://docs.python.org/3.5/library/stdtypes.html#str].

It’s missing a lot of the more complicated or specialized functions of that
class though.

	
sum()

	

	
super()

	

	
class tuple

	

	
class type

	

	
zip()

	

Exceptions

	
exception BaseException

	

	
exception ArithmeticError

	

	
exception AssertionError

	

	
exception AttributeError

	

	
exception EOFError

	

	
exception Exception

	

	
exception GeneratorExit

	

	
exception ImportError

	

	
exception IndentationError

	

	
exception IndexError

	

	
exception KeyboardInterrupt

	

	
exception KeyError

	

	
exception LookupError

	

	
exception MemoryError

	

	
exception NameError

	

	
exception NotImplementedError

	

	
exception OSError

	See CPython documentation: OSError [https://docs.python.org/3.5/library/exceptions.html#OSError]. MicroPython doesn’t implement errno
attribute, instead use the standard way to access exception arguments:
exc.args[0].

	
exception OverflowError

	

	
exception RuntimeError

	

	
exception StopAsyncIteration

	

	
exception StopIteration

	

	
exception SyntaxError

	

	
exception SystemExit

	See CPython documentation: SystemExit [https://docs.python.org/3.5/library/exceptions.html#SystemExit].

	
exception TypeError

	See CPython documentation: TypeError [https://docs.python.org/3.5/library/exceptions.html#TypeError].

	
exception UnicodeError

	

	
exception ValueError

	

	
exception ZeroDivisionError

	

Constants

	
Ellipsis

	The same as the ellipsis literal “…”. Special value used mostly in
conjunction with extended slicing syntax for user-defined container data types.

	
NotImplemented

	Special value which should be returned by the binary special methods (e.g.
__eq__(), __lt__(), __add__(), __rsub__(), etc.) to indicate that the
operation is not implemented with respect to the other type; may be returned
by the in-place binary special methods (e.g. __imul__(), __iand__(), etc.)
for the same purpose. It should not be evaluated in a boolean context.

Note: When a binary (or in-place) method returns NotImplemented the
interpreter will try the reflected operation on the other type (or some
other fallback, depending on the operator). If all attempts return
NotImplemented, the interpreter will raise an appropriate exception.
Incorrectly returning NotImplemented will result in a misleading error
message or the NotImplemented value being returned to Python code.

See Implementing the arithmetic operations for examples.

Note: NotImplementedError and NotImplemented are not interchangeable, even
though they have similar names and purposes. See NotImplementedError for
details on when to use it.

array – arrays of numeric data

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: array [https://docs.python.org/3.5/library/array.html#module-array].

Supported format codes: b, B, h, H, i, I, l,
L, q, Q, f, d (the latter 2 depending on the
floating-point support).

Classes

	
class array.array(typecode[, iterable])

	Create array with elements of given type. Initial contents of the
array are given by iterable. If it is not provided, an empty
array is created.

	
append(val)

	Append new element val to the end of array, growing it.

	
extend(iterable)

	Append new elements as contained in iterable to the end of
array, growing it.

	
decode()

	Outputs a string of the decoded array. Seems to treat each element
as a byte and use ASCII encoding only?

Difference for RI5

This function is an extension from the base MicroPython version.

cmath – mathematical functions for complex numbers

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: cmath [https://docs.python.org/3.5/library/cmath.html#module-cmath].

The cmath module provides some basic mathematical functions for
working with complex numbers.

Functions

	
cmath.cos(z)

	Return the cosine of z.

	
cmath.exp(z)

	Return the exponential of z.

	
cmath.log(z)

	Return the natural logarithm of z. The branch cut is along the negative real axis.

	
cmath.log10(z)

	Return the base-10 logarithm of z. The branch cut is along the negative real axis.

	
cmath.phase(z)

	Returns the phase of the number z, in the range (-pi, +pi].

	
cmath.polar(z)

	Returns, as a tuple, the polar form of z.

	
cmath.rect(r, phi)

	Returns the complex number with modulus r and phase phi.

	
cmath.sin(z)

	Return the sine of z.

	
cmath.sqrt(z)

	Return the square-root of z.

Constants

	
cmath.e

	base of the natural logarithm

	
cmath.pi

	the ratio of a circle’s circumference to its diameter

gc – control the garbage collector

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: gc [https://docs.python.org/3.5/library/gc.html#module-gc].

Functions

	
gc.enable()

	Enable automatic garbage collection. This is on by default for RI5 programs.

	
gc.disable()

	Disable automatic garbage collection. Heap memory can still be allocated,
and garbage collection can still be initiated manually using gc.collect().

	
gc.collect()

	Run a garbage collection.

	
gc.mem_alloc()

	Return the number of bytes of heap RAM that are allocated.

Difference to CPython

This function is MicroPython extension.

	
gc.mem_free()

	Return the number of bytes of available heap RAM, or -1 if this amount
is not known.

Difference to CPython

This function is MicroPython extension.

	
gc.threshold([amount])

	Set or query the additional GC allocation threshold. Normally, a collection
is triggered only when a new allocation cannot be satisfied, i.e. on an
out-of-memory (OOM) condition. If this function is called, in addition to
OOM, a collection will be triggered each time after amount bytes have been
allocated (in total, since the previous time such an amount of bytes
have been allocated). amount is usually specified as less than the
full heap size, with the intention to trigger a collection earlier than when the
heap becomes exhausted, and in the hope that an early collection will prevent
excessive memory fragmentation. This is a heuristic measure, the effect
of which will vary from application to application, as well as
the optimal value of the amount parameter.

Calling the function without argument will return the current value of
the threshold. A value of -1 means a disabled allocation threshold.

Difference to CPython

This function is a MicroPython extension. CPython has a similar
function - set_threshold(), but due to different GC
implementations, its signature and semantics are different.

	
gc.isenabled()

	Returns true if automatic collection is enabled.

Difference for RI5

This function is an extension from the base MicroPython version.

math – mathematical functions

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: math [https://docs.python.org/3.5/library/math.html#module-math].

The math module provides some basic mathematical functions for
working with floating-point numbers.

Note: On the RI5, early calculations show you get about 6 sig fig of
precision for floats.

Functions

	
math.acos(x)

	Return the inverse cosine of x.

	
math.acosh(x)

	Return the inverse hyperbolic cosine of x.

	
math.asin(x)

	Return the inverse sine of x.

	
math.asinh(x)

	Return the inverse hyperbolic sine of x.

	
math.atan(x)

	Return the inverse tangent of x.

	
math.atan2(y, x)

	Return the principal value of the inverse tangent of y/x.

	
math.atanh(x)

	Return the inverse hyperbolic tangent of x.

	
math.ceil(x)

	Return an integer, being x rounded towards positive infinity.

	
math.copysign(x, y)

	Return x with the sign of y.

	
math.cos(x)

	Return the cosine of x.

	
math.cosh(x)

	Return the hyperbolic cosine of x.

	
math.degrees(x)

	Return radians x converted to degrees.

	
math.erf(x)

	Return the error function of x.

	
math.erfc(x)

	Return the complementary error function of x.

	
math.exp(x)

	Return the exponential of x.

	
math.expm1(x)

	Return exp(x) - 1.

	
math.fabs(x)

	Return the absolute value of x.

	
math.floor(x)

	Return an integer, being x rounded towards negative infinity.

	
math.fmod(x, y)

	Return the remainder of x/y.

	
math.frexp(x)

	Decomposes a floating-point number into its mantissa and exponent.
The returned value is the tuple (m, e) such that x == m * 2**e
exactly. If x == 0 then the function returns (0.0, 0), otherwise
the relation 0.5 <= abs(m) < 1 holds.

	
math.gamma(x)

	Return the gamma function of x.

	
math.isfinite(x)

	Return True if x is finite.

	
math.isinf(x)

	Return True if x is infinite.

	
math.isnan(x)

	Return True if x is not-a-number

	
math.ldexp(x, exp)

	Return x * (2**exp).

	
math.lgamma(x)

	Return the natural logarithm of the gamma function of x.

	
math.log(x)

	Return the natural logarithm of x.

	
math.log10(x)

	Return the base-10 logarithm of x.

	
math.log2(x)

	Return the base-2 logarithm of x.

	
math.modf(x)

	Return a tuple of two floats, being the fractional and integral parts of
x. Both return values have the same sign as x.

	
math.pow(x, y)

	Returns x to the power of y.

	
math.radians(x)

	Return degrees x converted to radians.

	
math.sin(x)

	Return the sine of x.

	
math.sinh(x)

	Return the hyperbolic sine of x.

	
math.sqrt(x)

	Return the square root of x.

	
math.tan(x)

	Return the tangent of x.

	
math.tanh(x)

	Return the hyperbolic tangent of x.

	
math.trunc(x)

	Return an integer, being x rounded towards 0.

	
math.isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)

	Return True if the values a and b are close to each other and False otherwise.

Whether or not two values are considered close is determined according to
given absolute and relative tolerances.

rel_tol is the relative tolerance it is the maximum allowed difference
between a and b, relative to the larger absolute value of a or b. For
example, to set a tolerance of 5%, pass rel_tol=0.05. The default tolerance
is 1e-09, which assures that the two values are the same within about 9
decimal digits. rel_tol must be greater than zero.

abs_tol is the minimum absolute tolerance useful for comparisons near zero.
abs_tol must be at least zero.

If no errors occur, the result will be:
abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol).

The IEEE 754 special values of NaN, inf, and -inf will be handled according
to IEEE rules. Specifically, NaN is not considered close to any other value,
including NaN. inf and -inf are only considered close to themselves.

Difference for RI5

This function is an extension from the base MicroPython version.

	
math.factorial(x)

	Return x factorial. Raises ValueError if x is not integral or is negative.

Difference for RI5

This function is an extension from the base MicroPython version.

Constants

	
math.e

	base of the natural logarithm

	
math.pi

	the ratio of a circle’s circumference to its diameter

sys – system specific functions

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: sys [https://docs.python.org/3.5/library/sys.html#module-sys].

Functions

	
sys.exit(retval=0)

	Terminate current program with a given exit code. Underlyingly, this
function raise as SystemExit exception. If an argument is given, its
value given as an argument to SystemExit.

	
sys.print_exception(exc, file=sys.stdout)

	Print exception with a traceback to a file-like object file (or
sys.stdout by default).

Difference to CPython

This is simplified version of a function which appears in the
traceback module in CPython. Unlike traceback.print_exception(),
this function takes just exception value instead of exception type,
exception value, and traceback object; file argument should be
positional; further arguments are not supported. CPython-compatible
traceback module can be found in micropython-lib.

Constants

	
sys.argv

	A mutable list of arguments the current program was started with.
Generally none for RI5 programs run normally.

	
sys.byteorder

	The byte order of the system ("little" or "big").
Is little on the RI5

	
sys.implementation

	Object with information about the current Python implementation. For
MicroPython, it has following attributes:

	name - string “micropython”

	version - tuple (major, minor, micro), e.g. (1, 11, 0)

	mpy - number e.g. 517

This object is the recommended way to distinguish MicroPython from other
Python implementations (note that it still may not exist in the very
minimal ports).

Difference to CPython

CPython mandates more attributes for this object, but the actual useful
bare minimum is implemented in MicroPython.

	
sys.maxsize

	Maximum value which a native integer type can hold on the current platform,
or maximum value representable by MicroPython integer type, if it’s smaller
than platform max value (that is the case for MicroPython ports without
long int support).

On RI5, it’s 2147483647 (=0x7FFFFFFF).

This attribute is useful for detecting “bitness” of a platform (32-bit vs
64-bit, etc.). It’s recommended to not compare this attribute to some
value directly, but instead count number of bits in it:

bits = 0
v = sys.maxsize
while v:
 bits += 1
 v >>= 1
if bits > 32:
 # 64-bit (or more) platform
 ...
else:
 # 32-bit (or less) platform
 # Note that on 32-bit platform, value of bits may be less than 32
 # (e.g. 31) due to peculiarities described above, so use "> 16",
 # "> 32", "> 64" style of comparisons.

	
sys.modules

	Dictionary of loaded modules. On RI5, this doesn’t include Python-builtin
modules but does include modules loaded from the filesystem.

	
sys.path

	A mutable list of directories to search for imported modules.

On RI5, by default it’s [‘’, ‘/flash’, ‘/flash/lib’]

	
sys.platform

	The platform that MicroPython is running on. For OS/RTOS ports, this is
usually an identifier of the OS, e.g. "linux". For baremetal ports it
is an identifier of a board, e.g. "pyboard" for the original MicroPython
reference board. It thus can be used to distinguish one board from another.
If you need to check whether your program runs on MicroPython (vs other
Python implementation), use sys.implementation instead.

On RI5 it’s “LEGO Learning System Hub”.

	
sys.stderr

	Standard error stream.

	
sys.stdin

	Standard input stream.

	
sys.stdout

	Standard output stream.

	
sys.version

	Python language version that this implementation conforms to, as a string.
E.g. “3.4.0”.

	
sys.version_info

	Python language version that this implementation conforms to, as a tuple of
ints. E.g. (3, 4, 0)

ubinascii – binary/ASCII conversions

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: binascii [https://docs.python.org/3.5/library/binascii.html#module-binascii].

This module implements conversions between binary data and various
encodings of it in ASCII form (in both directions).

Functions

	
ubinascii.hexlify(data[, sep])

	Convert binary data to hexadecimal representation. Returns bytes string.

Difference to CPython

If additional argument, sep is supplied, it is used as a separator
between hexadecimal values.

	
ubinascii.unhexlify(data)

	Convert hexadecimal data to binary representation. Returns bytes string.
(i.e. inverse of hexlify)

	
ubinascii.a2b_base64(data)

	Decode base64-encoded data, ignoring invalid characters in the input.
Conforms to RFC 2045 s.6.8 [https://tools.ietf.org/html/rfc2045#section-6.8].
Returns a bytes object.

	
ubinascii.b2a_base64(data)

	Encode binary data in base64 format, as in RFC 3548 [https://tools.ietf.org/html/rfc3548.html]. Returns the encoded data
followed by a newline character, as a bytes object.

ucollections – collection and container types

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: collections [https://docs.python.org/3.5/library/collections.html#module-collections].

This module implements advanced collection and container types to
hold/accumulate various objects.

Classes

	
ucollections.deque(iterable, maxlen[, flags])

	Deques (double-ended queues) are a list-like container that support O(1)
appends and pops from either side of the deque. New deques are created
using the following arguments:

	iterable must be the empty tuple, and the new deque is created empty.

	maxlen must be specified and the deque will be bounded to this
maximum length. Once the deque is full, any new items added will
discard items from the opposite end.

	The optional flags can be 1 to check for overflow when adding items.

As well as supporting bool and len, deque objects have the following
methods:

	
deque.append(x)

	Add x to the right side of the deque.
Raises IndexError if overflow checking is enabled and there is no more room left.

	
deque.popleft()

	Remove and return an item from the left side of the deque.
Raises IndexError if no items are present.

	
ucollections.namedtuple(name, fields)

	This is factory function to create a new namedtuple type with a specific
name and set of fields. A namedtuple is a subclass of tuple which allows
to access its fields not just by numeric index, but also with an attribute
access syntax using symbolic field names. Fields is a sequence of strings
specifying field names. For compatibility with CPython it can also be a
a string with space-separated field named (but this is less efficient).
Example of use:

from ucollections import namedtuple

MyTuple = namedtuple("MyTuple", ("id", "name"))
t1 = MyTuple(1, "foo")
t2 = MyTuple(2, "bar")
print(t1.name)
assert t2.name == t2[1]

	
ucollections.OrderedDict(...)

	dict type subclass which remembers and preserves the order of keys
added. When ordered dict is iterated over, keys/items are returned in
the order they were added:

from ucollections import OrderedDict

To make benefit of ordered keys, OrderedDict should be initialized
from sequence of (key, value) pairs.
d = OrderedDict([("z", 1), ("a", 2)])
More items can be added as usual
d["w"] = 5
d["b"] = 3
for k, v in d.items():
 print(k, v)

Output:

z 1
a 2
w 5
b 3

uerrno – system error codes

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: errno [https://docs.python.org/3.5/library/errno.html#module-errno].

This module provides access to symbolic error codes for OSError exception.
A particular inventory of codes depends on MicroPython port.

Constants

	
EEXIST, EAGAIN, etc.

	Error codes, based on ANSI C/POSIX standard. All error codes start with
“E”. As mentioned above, inventory of the codes depends on
MicroPython port. Errors are usually accessible as exc.args[0]
where exc is an instance of OSError. Usage example:

try:
 uos.mkdir("my_dir")
except OSError as exc:
 if exc.args[0] == uerrno.EEXIST:
 print("Directory already exists")

	
EPERM = 1

	

	
ENOENT = 2

	

	
EIO = 5

	

	
EBADF = 9

	

	
EAGAIN = 11

	

	
ENOMEM = 12

	

	
EACCES = 13

	

	
EEXIST = 17

	

	
ENODEV = 19

	

	
EISDIR = 21

	

	
EINVAL = 22

	

	
EOPNOTSUPP = 95

	

	
EADDRINUSE = 98

	

	
ECONNABORTED = 103

	

	
ECONNRESET = 104

	

	
ENOBUFS = 105

	

	
ENOTCONN = 107

	

	
ETIMEDOUT = 110

	

	
ECONNREFUSED = 111

	

	
EHOSTUNREACH = 113

	

	
EALREADY = 114

	

	
EINPROGRESS = 115

	

	
uerrno.errorcode

	Dictionary mapping numeric error codes to strings with symbolic error
code (see above):

>>> print(uerrno.errorcode[uerrno.EEXIST])
EEXIST

uhashlib – hashing algorithms

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: hashlib [https://docs.python.org/3.5/library/hashlib.html#module-hashlib].

This module implements binary data hashing algorithms. The exact inventory
of available algorithms depends on a board. RI5 implements:

	SHA256 - The current generation, modern hashing algorithm (of SHA2 series).
It is suitable for cryptographically-secure purposes.

Constructors

	
class uhashlib.sha256([data])

	Create an SHA256 hasher object and optionally feed data into it.

Difference for RI5

Classes sha1 and md5 from the base MicroPython version are not implemented
on the RI5.

Methods

	
hash.update(data)

	Feed more binary data into hash.

	
hash.digest()

	Return hash for all data passed through hash, as a bytes object. After this
method is called, more data cannot be fed into the hash any longer.

	
hash.hexdigest()

	This method is NOT implemented. Use ubinascii.hexlify(hash.digest())
to achieve a similar effect.

uheapq – heap queue algorithm

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: heapq [https://docs.python.org/3.5/library/heapq.html#module-heapq].

This module implements the heap queue algorithm.

A heap queue is simply a list that has its elements stored in a certain way.

Functions

	
uheapq.heappush(heap, item)

	Push the item onto the heap.

	
uheapq.heappop(heap)

	Pop the first item from the heap, and return it. Raises IndexError if
heap is empty.

	
uheapq.heapify(x)

	Convert the list x into a heap. This is an in-place operation.

uio – input/output streams

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: io [https://docs.python.org/3.5/library/io.html#module-io].

This module contains additional types of stream (file-like) objects
and helper functions.

Conceptual hierarchy

Difference to CPython

Conceptual hierarchy of stream base classes is simplified in MicroPython,
as described in this section.

(Abstract) base stream classes, which serve as a foundation for behavior
of all the concrete classes, adhere to few dichotomies (pair-wise
classifications) in CPython. In MicroPython, they are somewhat simplified
and made implicit to achieve higher efficiencies and save resources.

An important dichotomy in CPython is unbuffered vs buffered streams. In
MicroPython, all streams are currently unbuffered. This is because all
modern OSes, and even many RTOSes and filesystem drivers already perform
buffering on their side. Adding another layer of buffering is counter-
productive (an issue known as “bufferbloat”) and takes precious memory.
Note that there still cases where buffering may be useful, so we may
introduce optional buffering support at a later time.

But in CPython, another important dichotomy is tied with “bufferedness” -
it’s whether a stream may incur short read/writes or not. A short read
is when a user asks e.g. 10 bytes from a stream, but gets less, similarly
for writes. In CPython, unbuffered streams are automatically short
operation susceptible, while buffered are guarantee against them. The
no short read/writes is an important trait, as it allows to develop
more concise and efficient programs - something which is highly desirable
for MicroPython. So, while MicroPython doesn’t support buffered streams,
it still provides for no-short-operations streams. Whether there will
be short operations or not depends on each particular class’ needs, but
developers are strongly advised to favor no-short-operations behavior
for the reasons stated above. For example, MicroPython sockets are
guaranteed to avoid short read/writes. Actually, at this time, there is
no example of a short-operations stream class in the core, and one would
be a port-specific class, where such a need is governed by hardware
peculiarities.

The no-short-operations behavior gets tricky in case of non-blocking
streams, blocking vs non-blocking behavior being another CPython dichotomy,
fully supported by MicroPython. Non-blocking streams never wait for
data either to arrive or be written - they read/write whatever possible,
or signal lack of data (or ability to write data). Clearly, this conflicts
with “no-short-operations” policy, and indeed, a case of non-blocking
buffered (and this no-short-ops) streams is convoluted in CPython - in
some places, such combination is prohibited, in some it’s undefined or
just not documented, in some cases it raises verbose exceptions. The
matter is much simpler in MicroPython: non-blocking stream are important
for efficient asynchronous operations, so this property prevails on
the “no-short-ops” one. So, while blocking streams will avoid short
reads/writes whenever possible (the only case to get a short read is
if end of file is reached, or in case of error (but errors don’t
return short data, but raise exceptions)), non-blocking streams may
produce short data to avoid blocking the operation.

The final dichotomy is binary vs text streams. MicroPython of course
supports these, but while in CPython text streams are inherently
buffered, they aren’t in MicroPython. (Indeed, that’s one of the cases
for which we may introduce buffering support.)

Note that for efficiency, MicroPython doesn’t provide abstract base
classes corresponding to the hierarchy above, and it’s not possible
to implement, or subclass, a stream class in pure Python.

Functions

	
uio.open(name, mode='r', buffering=- 1, encoding=None)

	Open a file. Builtin open() function is aliased to this function.

Classes

	
class uio.IOBase(...)

	(Python abstract base class for IO objects still technically exists, although isinstance
doesn’t think the ones below are instances of it.)

	
class uio.FileIO(...)

	This is type of a file open in binary mode, e.g. using open(name, "rb").
You should not instantiate this class directly.

	
class uio.TextIOWrapper(...)

	This is type of a file open in text mode, e.g. using open(name, "rt").
You should not instantiate this class directly.

	
class uio.StringIO([string])

	

	
class uio.BytesIO([string])

	In-memory file-like objects for input/output. StringIO is used for
text-mode I/O (similar to a normal file opened with “t” modifier).
BytesIO is used for binary-mode I/O (similar to a normal file
opened with “b” modifier). Initial contents of file-like objects
can be specified with string parameter (should be normal string
for StringIO or bytes object for BytesIO). All the basic file
methods (read(), readinto(), readline(), readlines(), write(),
seek(), flush(), close()) are available on these objects, and additionally, a
following method:

	
getvalue()

	Get the current contents of the underlying buffer which holds data.

	
class uio.StringIO(alloc_size)

	

	
class uio.BytesIO(alloc_size)

	Create an empty StringIO/BytesIO object, preallocated to hold up
to alloc_size number of bytes. That means that writing that amount
of bytes won’t lead to reallocation of the buffer, and thus won’t hit
out-of-memory situation or lead to memory fragmentation. These constructors
are a MicroPython extension and are recommended for usage only in special
cases and in system-level libraries, not for end-user applications.

Difference to CPython

These constructors are a MicroPython extension.

ujson – JSON encoding and decoding

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: json [https://docs.python.org/3.5/library/json.html#module-json].

This modules allows to convert between Python objects and the JSON
data format.

Functions

	
ujson.dump(obj, stream)

	Serialise obj to a JSON string, writing it to the given stream.

	
ujson.dumps(obj)

	Return obj represented as a JSON string.

	
ujson.load(stream)

	Parse the given stream, interpreting it as a JSON string and
deserialising the data to a Python object. The resulting object is
returned.

Parsing continues until end-of-file is encountered.
A ValueError is raised if the data in stream is not correctly formed.

	
ujson.loads(str)

	Parse the JSON str and return an object. Raises ValueError if the
string is not correctly formed.

uos – basic “operating system” services

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: os [https://docs.python.org/3.5/library/os.html#module-os].

The uos module contains functions for filesystem access and mounting,
terminal redirection and duplication, and the uname function.

General functions

	
uos.uname()

	Return a tuple (possibly a named tuple) containing information about the
underlying machine and/or its operating system. The tuple has five fields
in the following order, each of them being a string:

	sysname – the name of the underlying system. “Lego Technic Large Hub”

	nodename – the network name. “LEGO Learning System Hub”

	release – the version of the underlying system. The MicroPython release number on which this is based.

	version – a more exact MicroPython version and build date

	machine – an identifier for the underlying hardware (eg board, CPU). “Lego Technic Large Hub with STM32F413xx”

Difference for RI5

The function uos.urandom() from the base MicroPython version is not implemented
on the RI5

Constants

	
uos.sep

	Filesystem path separator ‘'

Difference for RI5

This constant is no longer noted in the base MicroPython docs version.

Filesystem access

	
uos.chdir(path)

	Change current directory.

	
uos.getcwd()

	Get the current directory.

	
uos.ilistdir([dir])

	This function returns an iterator which then yields tuples corresponding to
the entries in the directory that it is listing. With no argument it lists the
current directory, otherwise it lists the directory given by dir.

The tuples have the form (name, type, inode, size):

	name is a string (or bytes if dir is a bytes object) and is the name of
the entry;

	type is an integer that specifies the type of the entry, with 0x4000 for
directories and 0x8000 for regular files;

	inode is an integer corresponding to the inode of the file, and may be 0
for filesystems that don’t have such a notion.

	For file entries, size is an integer representing the size of the file
or -1 if unknown. Its meaning is currently undefined for directory
entries.

	
uos.listdir([dir])

	With no argument, list the current directory. Otherwise list the given directory.

	
uos.mkdir(path)

	Create a new directory.

	
uos.remove(path)

	Remove a file. unlink() is also available and is semantically identical to this.

	
uos.rmdir(path)

	Remove a directory.

	
uos.rename(old_path, new_path)

	Rename a file.

	
uos.stat(path)

	Get the status of a file or directory.

	
uos.statvfs(path)

	Get the status of a fileystem.

Returns a tuple with the filesystem information in the following order:

	f_bsize – file system block size. 4096 for the RI5.

	f_frsize – fragment size. 4096 for the RI5.

	f_blocks – size of fs in f_frsize units. 7936 for the RI5.

	f_bfree – number of free blocks.

	f_bavail – number of free blocks for unpriviliged users

	f_files – number of inodes. 0 for the RI5.

	f_ffree – number of free inodes. 0 for the RI5.

	f_favail – number of free inodes for unpriviliged users. 0 for the RI5.

	f_flag – mount flags. 0 for the RI5.

	f_namemax – maximum filename length. 255 for the RI5.

	
uos.sync()

	Sync all filesystems.

Terminal redirection and duplication

	
uos.dupterm(stream_object, index=0)

	Duplicate or switch the MicroPython terminal (the REPL) on the given stream-like
object. The stream_object argument must be a native stream object, or derive
from uio.IOBase and implement the readinto() and
write() methods. The stream should be in non-blocking mode and
readinto() should return None if there is no data available for reading.

After calling this function all terminal output is repeated on this stream,
and any input that is available on the stream is passed on to the terminal input.

The index parameter should be a non-negative integer and specifies which
duplication slot is set. A given port may implement more than one slot (slot 0
will always be available) and in that case terminal input and output is
duplicated on all the slots that are set.

If None is passed as the stream_object then duplication is cancelled on
the slot given by index.

The function returns the previous stream-like object in the given slot.

Filesystem mounting

Some ports provide a Virtual Filesystem (VFS) and the ability to mount multiple
“real” filesystems within this VFS. Filesystem objects can be mounted at either
the root of the VFS, or at a subdirectory that lives in the root. This allows
dynamic and flexible configuration of the filesystem that is seen by Python
programs. Ports that have this functionality provide the mount() and
umount() functions, and possibly various filesystem implementations
represented by VFS classes.

	
uos.mount(fsobj, mount_point, *, readonly)

	Mount the filesystem object fsobj at the location in the VFS given by the
mount_point string. fsobj can be a a VFS object that has a mount()
method, or a block device. If it’s a block device then the filesystem type
is automatically detected (an exception is raised if no filesystem was
recognised). mount_point may be '/' to mount fsobj at the root,
or '/<name>' to mount it at a subdirectory under the root.

If readonly is True then the filesystem is mounted read-only.

During the mount process the method mount() is called on the filesystem
object.

Will raise OSError(EPERM) if mount_point is already mounted.

	
uos.umount(mount_point)

	Unmount a filesystem. mount_point can be a string naming the mount location,
or a previously-mounted filesystem object. During the unmount process the
method umount() is called on the filesystem object.

Will raise OSError(EINVAL) if mount_point is not found.

	
class uos.VfsLfs1(block_dev)

	Create a filesystem object that uses the littlefs v1 filesystem format. Storage of
the littlefs filesystem is provided by block_dev.
Objects created by this constructor can be mounted using mount().

	
static mkfs(block_dev)

	Build a littlefs filesystem on block_dev.

Difference for RI5

The base MicroPython version uses a VfsFat filesystem. The RI5 replaces
that with VfsLfs1. This also means that block devices below use the
extended interface so need to implement the offset parameter when doing
reads and writes.

Block devices

A block device is an object which implements the block protocol, which is a set
of methods described below by the AbstractBlockDev class. A concrete
implementation of this class will usually allow access to the memory-like
functionality a piece of hardware (like flash memory). A block device can be
used by a particular filesystem driver to store the data for its filesystem.

	
class uos.AbstractBlockDev(...)

	Construct a block device object. The parameters to the constructor are
dependent on the specific block device.

	
readblocks(block_num, buf, offset)

	Starting at the block given by the index block_num and from offset
bytes into that block, read blocks from
the device into buf (an array of bytes).
The number of blocks to read is given by the length of buf.

	
writeblocks(block_num, buf, offset)

	Starting at the block given by the index block_num and from offset
bytes into that block, write blocks from
buf (an array of bytes) to the device.
The number of blocks to write is given by the length of buf.

	
ioctl(op, arg)

	Control the block device and query its parameters. The operation to
perform is given by op which is one of the following integers:

	1 – initialise the device (arg is unused)

	2 – shutdown the device (arg is unused)

	3 – sync the device (arg is unused)

	4 – get a count of the number of blocks, should return an integer
(arg is unused)

	5 – get the number of bytes in a block, should return an integer,
or None in which case the default value of 512 is used
(arg is unused)

	6 – erase a block (arg is the block number to erase)

By way of example, the following class will implement a block device that stores
its data in RAM using a bytearray:

class RAMBlockDev:
 def __init__(self, block_size, num_blocks):
 self.block_size = block_size
 self.data = bytearray(block_size * num_blocks)

 def readblocks(self, block_num, buf, offset):
 for i in range(len(buf)):
 buf[i] = self.data[block_num * self.block_size + offset + i]

 def writeblocks(self, block_num, buf, offset):
 for i in range(len(buf)):
 self.data[block_num * self.block_size + offset + i] = buf[i]

 def ioctl(self, op, arg):
 if op == 4: # get number of blocks
 return len(self.data) // self.block_size
 if op == 5: # get block size
 return self.block_size
 if op == 6: # erase block
 self.writeblocks(arg, bytearray(self.block_size), 0)

It should be able to be used as follows, although this currently seems to fail
with a TypeError on RI5 (so maybe something else is missing from the above):

import uos

bdev = RAMBlockDev(512, 50)
uos.VfsFat.mkfs(bdev)
vfs = uos.VfsFat(bdev)
uos.mount(vfs, '/ramdisk')

ure – simple regular expressions

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: re [https://docs.python.org/3.5/library/re.html#module-re].

This module implements regular expression operations. Regular expression
syntax supported is a subset of CPython re module (and actually is
a subset of POSIX extended regular expressions).

Supported operators and special sequences are:

	.
	Match any character.

	[...]
	Match set of characters. Individual characters and ranges are supported,
including negated sets (e.g. [^a-c]).

	^
	Match the start of the string.

	$
	Match the end of the string.

	?
	Match zero or one of the previous sub-pattern.

	*
	Match zero or more of the previous sub-pattern.

	+
	Match one or more of the previous sub-pattern.

	??
	Non-greedy version of ?, match zero or one, with the preference
for zero.

	*?
	Non-greedy version of *, match zero or more, with the preference
for the shortest match.

	+?
	Non-greedy version of +, match one or more, with the preference
for the shortest match.

	|
	Match either the left-hand side or the right-hand side sub-patterns of
this operator.

	(...)
	Grouping. Each group is capturing (a substring it captures can be accessed
with match.group() method).

	\d
	Matches digit. Equivalent to [0-9].

	\D
	Matches non-digit. Equivalent to [^0-9].

	\s
	Matches whitespace. Equivalent to [\t-\r].

	\S
	Matches non-whitespace. Equivalent to [^ \t-\r].

	\w
	Matches “word characters” (ASCII only). Equivalent to [A-Za-z0-9_].

	\W
	Matches non “word characters” (ASCII only). Equivalent to [^A-Za-z0-9_].

	\
	Escape character. Any other character following the backslash, except
for those listed above, is taken literally. For example, * is
equivalent to literal * (not treated as the * operator).
Note that \r, \n, etc. are not handled specially, and will be
equivalent to literal letters r, n, etc. Due to this, it’s
not recommended to use raw Python strings (r"") for regular
expressions. For example, r"\r\n" when used as the regular
expression is equivalent to "rn". To match CR character followed
by LF, use "\r\n".

NOT SUPPORTED:

	counted repetitions ({m,n})

	named groups ((?P<name>...))

	non-capturing groups ((?:...))

	more advanced assertions (\b, \B)

	special character escapes like \r, \n - use Python’s own escaping
instead

	etc.

Example:

import ure

As ure doesn't support escapes itself, use of r"" strings is not
recommended.
regex = ure.compile("[\r\n]")

regex.split("line1\rline2\nline3\r\n")

Result:
['line1', 'line2', 'line3', '', '']

Functions

	
ure.compile(regex_str[, flags])

	Compile regular expression, return regex object.

	
ure.match(regex_str, string)

	Compile regex_str and match against string. Match always happens
from starting position in a string.

	
ure.search(regex_str, string)

	Compile regex_str and search it in a string. Unlike match, this will search
string for first position which matches regex (which still may be
0 if regex is anchored).

	
ure.sub(regex_str, replace, string, count=0, flags=0)

	Compile regex_str and search for it in string, replacing all matches
with replace, and returning the new string.

replace can be a string or a function. If it is a string then escape
sequences of the form \<number> and \g<number> can be used to
expand to the corresponding group (or an empty string for unmatched groups).
If replace is a function then it must take a single argument (the match)
and should return a replacement string.

If count is specified and non-zero then substitution will stop after
this many substitutions are made. The flags argument is ignored.

Note: availability of this function depends on MicroPython port.

Difference for RI5

The base MicroPython version has a ure.DEBUG flag value that the RI5 doesn’t have.

Regex objects

Compiled regular expression. Instances of this class are created using
ure.compile().

	
regex.match(string)

	
regex.search(string)

	
regex.sub(replace, string, count=0, flags=0)

	Similar to the module-level functions match(), search()
and sub().
Using methods is (much) more efficient if the same regex is applied to
multiple strings.

	
regex.split(string, max_split=- 1)

	Split a string using regex. If max_split is given, it specifies
maximum number of splits to perform. Returns list of strings (there
may be up to max_split+1 elements if it’s specified).

Match objects

Match objects as returned by match() and search() methods, and passed
to the replacement function in sub().

	
match.group(index)

	Return matching (sub)string. index is 0 for entire match,
1 and above for each capturing group. Only numeric groups are supported.

Difference for RI5

The base MicroPython version has various methods that the RI5 doesn’t:
match.groups(), match.start(), match.end(), match.span()

uselect – wait for events on a set of streams

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: select [https://docs.python.org/3.5/library/select.html#module-select].

This module provides functions to efficiently wait for events on multiple
streams (select streams which are ready for operations).

Functions

	
uselect.poll()

	Create an instance of the Poll class.

	
uselect.select(rlist, wlist, xlist[, timeout])

	Wait for activity on a set of objects.

This function is provided by some MicroPython ports for compatibility
and is not efficient. Usage of Poll is recommended instead.

class Poll

Methods

	
poll.register(obj[, eventmask])

	Register stream obj for polling. eventmask is logical OR of:

	uselect.POLLIN - data available for reading

	uselect.POLLOUT - more data can be written

Note that flags like uselect.POLLHUP and uselect.POLLERR are
not valid as input eventmask (these are unsolicited events which
will be returned from poll() regardless of whether they are asked
for). This semantics is per POSIX.

eventmask defaults to uselect.POLLIN | uselect.POLLOUT.

It is OK to call this function multiple times for the same obj.
Successive calls will update obj’s eventmask to the value of
eventmask (i.e. will behave as modify()).

	
poll.unregister(obj)

	Unregister obj from polling.

	
poll.modify(obj, eventmask)

	Modify the eventmask for obj. If obj is not registered, OSError
is raised with error of ENOENT.

	
poll.poll(timeout=- 1)

	Wait for at least one of the registered objects to become ready or have an
exceptional condition, with optional timeout in milliseconds (if timeout
arg is not specified or -1, there is no timeout).

Returns list of (obj, event, …) tuples. There may be other elements in
tuple, depending on a platform and version, so don’t assume that its size is 2.
The event element specifies which events happened with a stream and
is a combination of uselect.POLL* constants described above. Note that
flags uselect.POLLHUP and uselect.POLLERR can be returned at any time
(even if were not asked for), and must be acted on accordingly (the
corresponding stream unregistered from poll and likely closed), because
otherwise all further invocations of poll() may return immediately with
these flags set for this stream again.

In case of timeout, an empty list is returned.

Difference to CPython

Tuples returned may contain more than 2 elements as described above.

	
poll.ipoll(timeout=- 1, flags=0)

	Like poll.poll(), but instead returns an iterator which yields a
callee-owned tuple. This function provides an efficient, allocation-free
way to poll on streams.

If flags is 1, one-shot behavior for events is employed: streams for
which events happened will have their event masks automatically reset
(equivalent to poll.modify(obj, 0)), so new events for such a stream
won’t be processed until new mask is set with poll.modify(). This
behavior is useful for asynchronous I/O schedulers.

Difference to CPython

This function is a MicroPython extension.

ustruct – pack and unpack primitive data types

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: struct [https://docs.python.org/3.5/library/struct.html#module-struct].

Supported size/byte order prefixes: @, <, >, !.

Supported format codes: b, B, h, H, i, I, l,
L, q, Q, s, P, f, d.

Functions

	
ustruct.calcsize(fmt)

	Return the number of bytes needed to store the given fmt.

	
ustruct.pack(fmt, v1, v2, ...)

	Pack the values v1, v2, … according to the format string fmt.
The return value is a bytes object encoding the values.

	
ustruct.pack_into(fmt, buffer, offset, v1, v2, ...)

	Pack the values v1, v2, … according to the format string fmt
into a buffer starting at offset. offset may be negative to count
from the end of buffer.

	
ustruct.unpack(fmt, data)

	Unpack from the data according to the format string fmt.
The return value is a tuple of the unpacked values.

	
ustruct.unpack_from(fmt, data, offset=0)

	Unpack from the data starting at offset according to the format string
fmt. offset may be negative to count from the end of buffer. The return
value is a tuple of the unpacked values.

utime – time related functions

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: time [https://docs.python.org/3.5/library/time.html#module-time].

The utime module provides functions for getting the current time and date,
measuring time intervals, and for delays.

Time Epoch: In contrast to Unix (and the Unix port of Micropython) using
1970-01-01 00:00:00 UTC, embedded ports including the RI5 use epoch of
2000-01-01 00:00:00 UTC.

Maintaining actual calendar date/time: This requires a
Real Time Clock (RTC). On systems with underlying OS (including some
RTOS), an RTC may be implicit. Setting and maintaining actual calendar
time is responsibility of OS/RTOS and is done outside of MicroPython,
it just uses OS API to query date/time. On baremetal ports like the RI5 however
system time depends on machine.RTC() object. The current calendar time
may be set using machine.RTC().datetime(tuple) function.

On the RI5, the RTC seems to keep running while the Hub is either switched on
or plugged into a USB power source. When not powered in this way it resets to
the value 473385600 seconds, or 2015-01-01 00:00:00 UTC. Also interesting is
that after a reset, the RTC only seems to start counting when it is first
used to get the time since Epoch. (Use of the sleep/ticks functions don’t
count, but machine.RTC() functions datetime(), wakeup() and
calibration() do start it going.)

The RI5 doesn’t keep very exact time since its RTC is just based on CPU
clock-cycles. The machine.RTC().calibration() function can be used to
better approximate real time, but note that this may require tuning for a
particular system, and the functions below should probably not be relied upon
for exact timekeeping without access to an external time source.

Functions

	
utime.localtime([secs])

	Convert a time expressed in seconds since the Epoch (see above) into an 8-tuple which
contains: (year, month, mday, hour, minute, second, weekday, yearday)
If secs is not provided or None, then the current time from the RTC is used.

	year includes the century (for example 2014).

	month is 1-12

	mday is 1-31

	hour is 0-23

	minute is 0-59

	second is 0-59

	weekday is 0-6 for Mon-Sun

	yearday is 1-366

Note that the RTC time can be successfully set to certain invalid values -
I haven’t experimented in detail with the behaviour of the RTC or this
function after such events.

	
utime.mktime()

	This is inverse function of localtime. It’s argument is a full 8-tuple
which expresses a time as per localtime. It returns an integer which is
the number of seconds since Jan 1, 2000.

	
utime.sleep(seconds)

	Sleep for the given number of seconds. seconds may be a floating-point
number to sleep for a fractional number of seconds.

	
utime.sleep_ms(ms)

	Delay for given number of milliseconds, should be positive or 0.

	
utime.sleep_us(us)

	Delay for given number of microseconds, should be positive or 0.

	
utime.ticks_ms()

	Returns an increasing millisecond counter with an arbitrary reference point, that
wraps around after some value.

The wrap-around value is not explicitly exposed, but we will
refer to it as TICKS_MAX to simplify discussion. Period of the values is
TICKS_PERIOD = TICKS_MAX + 1. TICKS_PERIOD is guaranteed to be a power of
two, but otherwise may differ from port to port. On the RI5 it is 0x40000000.
The same period value is used
for all of ticks_ms(), ticks_us(), ticks_cpu() functions (for
simplicity). Thus, these functions will return a value in range [0 ..
TICKS_MAX], inclusive, total TICKS_PERIOD values. Note that only
non-negative values are used. For the most part, you should treat values returned
by these functions as opaque. The only operations available for them are
ticks_diff() and ticks_add() functions described below.

Note: Performing standard mathematical operations (+, -) or relational
operators (<, <=, >, >=) directly on these value will lead to invalid
result. Performing mathematical operations and then passing their results
as arguments to ticks_diff() or ticks_add() will also lead to
invalid results from the latter functions.

	
utime.ticks_us()

	Just like ticks_ms() above, but in microseconds.

	
utime.ticks_cpu()

	Similar to ticks_ms() and ticks_us(), but with the highest possible resolution
in the system: for RI5 this is the CPU clock at 100MHz. This
function is intended for very fine benchmarking or very tight real-time loops.

	
utime.ticks_add(ticks, delta)

	Offset ticks value by a given number, which can be either positive or negative.
Given a ticks value, this function allows to calculate ticks value delta
ticks before or after it, following modular-arithmetic definition of tick values
(see ticks_ms() above). ticks parameter must be a direct result of call
to ticks_ms(), ticks_us(), or ticks_cpu() functions (or from previous
call to ticks_add()). However, delta can be an arbitrary integer number
or numeric expression. ticks_add() is useful for calculating deadlines for
events/tasks. (Note: you must use ticks_diff() function to work with
deadlines.)

Examples:

Find out what ticks value there was 100ms ago
print(ticks_add(time.ticks_ms(), -100))

Calculate deadline for operation and test for it
deadline = ticks_add(time.ticks_ms(), 200)
while ticks_diff(deadline, time.ticks_ms()) > 0:
 do_a_little_of_something()

Find out TICKS_MAX used by this port
print(ticks_add(0, -1))

	
utime.ticks_diff(ticks1, ticks2)

	Measure ticks difference between values returned from ticks_ms(), ticks_us(),
or ticks_cpu() functions, as a signed value which may wrap around.

The argument order is the same as for subtraction
operator, ticks_diff(ticks1, ticks2) has the same meaning as ticks1 - ticks2.
However, values returned by ticks_ms(), etc. functions may wrap around, so
directly using subtraction on them will produce incorrect result. That is why
ticks_diff() is needed, it implements modular (or more specifically, ring)
arithmetics to produce correct result even for wrap-around values (as long as they not
too distant inbetween, see below). The function returns signed value in the range
[-TICKS_PERIOD/2 .. TICKS_PERIOD/2-1] (that’s a typical range definition for
two’s-complement signed binary integers). If the result is negative, it means that
ticks1 occurred earlier in time than ticks2. Otherwise, it means that
ticks1 occurred after ticks2. This holds only if ticks1 and ticks2
are apart from each other for no more than TICKS_PERIOD/2-1 ticks. If that does
not hold, incorrect result will be returned. Specifically, if two tick values are
apart for TICKS_PERIOD/2-1 ticks, that value will be returned by the function.
However, if TICKS_PERIOD/2 of real-time ticks has passed between them, the
function will return -TICKS_PERIOD/2 instead, i.e. result value will wrap around
to the negative range of possible values.

Informal rationale of the constraints above: Suppose you are locked in a room with no
means to monitor passing of time except a standard 12-notch clock. Then if you look at
dial-plate now, and don’t look again for another 13 hours (e.g., if you fall for a
long sleep), then once you finally look again, it may seem to you that only 1 hour
has passed. To avoid this mistake, just look at the clock regularly. Your application
should do the same. “Too long sleep” metaphor also maps directly to application
behavior: don’t let your application run any single task for too long. Run tasks
in steps, and do time-keeping inbetween.

ticks_diff() is designed to accommodate various usage patterns, among them:

	Polling with timeout. In this case, the order of events is known, and you will deal
only with positive results of ticks_diff():

Wait for GPIO pin to be asserted, but at most 500us
start = time.ticks_us()
while pin.value() == 0:
 if time.ticks_diff(time.ticks_us(), start) > 500:
 raise TimeoutError

	Scheduling events. In this case, ticks_diff() result may be negative
if an event is overdue:

This code snippet is not optimized
now = time.ticks_ms()
scheduled_time = task.scheduled_time()
if ticks_diff(scheduled_time, now) > 0:
 print("Too early, let's nap")
 sleep_ms(ticks_diff(scheduled_time, now))
 task.run()
elif ticks_diff(scheduled_time, now) == 0:
 print("Right at time!")
 task.run()
elif ticks_diff(scheduled_time, now) < 0:
 print("Oops, running late, tell task to run faster!")
 task.run(run_faster=true)

Note: Do not pass time() values to ticks_diff(), you should use
normal mathematical operations on them. But note that time() may (and will)
also overflow. This is known as https://en.wikipedia.org/wiki/Year_2038_problem .

	
utime.time()

	Returns the number of seconds, as an integer, since the Epoch, assuming that
underlying RTC is set and maintained as described above. If you
want to develop portable MicroPython application, you should not rely on this function
to provide higher than second precision. If you need higher precision, use
ticks_ms() and ticks_us() functions, if you need calendar time,
localtime() without an argument is a better choice.

Difference to CPython

In CPython, this function returns number of
seconds since Unix epoch, 1970-01-01 00:00 UTC, as a floating-point,
usually having microsecond precision. With MicroPython, only Unix port
uses the same Epoch, and if floating-point precision allows,
returns sub-second precision. Embedded hardware usually doesn’t have
floating-point precision to represent both long time ranges and subsecond
precision, so they use integer value with second precision. Some embedded
hardware also lacks battery-powered RTC, so returns number of seconds
since last power-up or from other relative, hardware-specific point
(e.g. reset).

uzlib – zlib decompression

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: zlib [https://docs.python.org/3.5/library/zlib.html#module-zlib].

This module allows to decompress binary data compressed with
DEFLATE algorithm [https://en.wikipedia.org/wiki/DEFLATE]
(commonly used in zlib library and gzip archiver). Compression
is not yet implemented.

Functions

	
uzlib.decompress(data, wbits=0, bufsize=0)

	Return decompressed data as bytes. wbits is DEFLATE dictionary window
size used during compression (8-15, the dictionary size is power of 2 of
that value). Additionally, if value is positive, data is assumed to be
zlib stream (with zlib header). Otherwise, if it’s negative, it’s assumed
to be raw DEFLATE stream. bufsize parameter is for compatibility with
CPython and is ignored.

	
class uzlib.DecompIO(stream, wbits=0)

	Create a stream wrapper which allows transparent decompression of
compressed data in another stream. This allows to process compressed
streams with data larger than available heap size. In addition to
values described in decompress(), wbits may take values
24..31 (16 + 8..15), meaning that input stream has gzip header.

Difference to CPython

This class is MicroPython extension. It’s included on provisional
basis and may be changed considerably or removed in later versions.

Current methods of the stream are read(), readinto() and readline().

urandom – random number generation

This module implements a subset of the corresponding CPython module,
as described below. For more information, refer to the original
CPython documentation: random [https://docs.python.org/3.5/library/random.html#module-random]

Difference to CPython

The pseudorandom algorithm used in Micropython is the
Yasmarang algorithm [http://www.literatecode.com/yasmarang] , instead of
the Mersenne Twister used in CPython.

This module allows generation of pseudo-random numbers, including setting of a
seed. (These are probably not suitable for cryptographic purposes.)

On the RI5, the random generators do work without calling seed(). It’s not
immediately clear what seed is used by the module in this case, but there’s no
obvious repetition in outputs. If you want an explicit seed whose value is
relatively difficult to predict, consider something like utime.ticks_cpu().

Functions

	
urandom.seed(a)

	Initialize the pseudorandom number generator with integer a.

	
urandom.randrange(stop)

	

	
urandom.randrange(start, stop[, step])

	Return a randomly selected element from range(stop) or range(start, stop, step).

	
urandom.randint(a, b)

	Return a random integer N between a and b (inclusive).

	
urandom.getrandbits(n)

	Return an integer with n random bits.

	
urandom.choice(seq)

	Return a random element of the given sequence.

	
urandom.random()

	Return a float between 0 and 1 (not including 1).

	
urandom.uniform(a, b)

	Return a float between a and b (b may or may not be included depending on
floating-point rounding).

machine — functions related to the hardware

The machine module contains specific functions related to the hardware
on a particular board. Most functions in this module allow to achieve direct
and unrestricted access to and control of hardware blocks on a system
(like CPU, timers, buses, etc.). Used incorrectly, this can lead to
malfunction, lockups, crashes of your board, and in extreme cases, hardware
damage.

The RI5 version of this module seems to be a lot like the STM32 port of
Micropython, as you might expect given that the RI5 runs on a STM32F413. A lot
of the RI5 specifics here line up with the code for that port.

A note of callbacks used by functions and class methods of machine module:
all these callbacks should be considered as executing in an interrupt context.
This is true for both physical devices with IDs >= 0 and “virtual” devices
with negative IDs like -1 (these “virtual” devices are still thin shims on
top of real hardware and real hardware interrupts). See Writing interrupt handlers.

Reset related functions

	
machine.reset()

	Resets the device in a manner similar to pushing the external RESET
button.

	
machine.soft_reset()

	On RI5, resets to menu with a SystemExit, as though calling sys.exit().
Doesn’t seem to change the reset_cause() below.

Difference for RI5

This function isn’t in the base MicroPython, at least not the version
RI5 was branched from. It’s also not clear it does precisely the same
thing as the soft_reset function in the latest base MicroPython version.

	
machine.reset_cause()

	Get the reset cause. See constants for the
possible return values. On RI5 it doesn’t seem to report SOFT_RESET, and
PWRON_RESET is only reported when the Hub has been both powered off and
unplugged and then powered up. But the others all seem to work as you’d
expect.

Interrupt related functions

	
machine.disable_irq()

	Disable interrupt requests.
Returns the previous IRQ state which should be considered an opaque value.
This return value should be passed to the enable_irq() function to restore
interrupts to their original state, before disable_irq() was called.

On the RI5, the return value seems to be True if interrupt requests were
successfully disabled, and False if they weren’t (which you get for example
if you try to disable twice without enabling in between).

	
machine.enable_irq(state)

	Re-enable interrupt requests.
The state parameter should be the value that was returned from the most
recent call to the disable_irq() function.

On the RI5, the parameter seems to determine whether the system actually tries
to enable interrupts or not - i.e. if False it does nothing. This allows
the user to nest calls to disable/enable, but to overlap them in other ways
you would have to keep track of how many disable calls there have been
yourself. Note that trying to enable twice with True parameters in succession
seems to crash the system.

Power related functions

	
machine.freq()

	
With no parameters, returns CPU frequency in hertz, or sets it with a parameter.

Difference for RI5

See below for RI5-specifics.

In RI5 this actually returns a tuple (S, H, P1, P2) of the various clock
speed frequencies of the board. These can be set by passing one to four
parameters to the function. Any unsupplied parameters are set in proportion
to their default relationship to S, so setting freq(S/2) will divide
everything by 2.

See STM32F413 board documentation for full details on the four clocks here,
but in terms of RI5 observations:

	S = System Clock frequency. On my system, it seems to default to 96000000.
Presumably this dictates how fast the CPU runs.

	H = AHB (Advanced High-Performance Bus) Clock frequency. On my system,
it seems to default to 96000000. Possibly controls some aspect of USB,
because setting this too low (e.g. 24MHz) seems to break the connection
between RI5 and the app and lead to debug logs showing json messages with
characters doubled or missing. And potentially other dangers - set at
your peril!

	P1 = APB1 (Advanced Peripheral Bus 1) Clock frequency. On my system, it
seems to default to 24000000. This seems to control most of the output
systems - halving it causes the LED to flicker, and lights and sound go
half as fast. It also has some impact on USB though and maybe some quite
key systems too as a further reduction broke the app connection and had me
nervous I’d broken things more seriously for a while. Set at your peril!

	P2 = APB2 (Advanced Peripheral Bus 2) Clock frequency. On my system, it
seems to default to 48000000. No obvious effect discovered yet.

Frequency changes persist between programs, but go back to defaults on a
hard reset.

	
machine.idle()

	Gates the clock to the CPU, useful to reduce power consumption at any time during
short or long periods. Peripherals continue working and execution resumes as soon
as any interrupt is triggered (on many ports this includes system timer
interrupt occurring at regular intervals on the order of millisecond).

Similar to other low-power functions, it’s not clear how much use this is on
the RI5. It doesn’t turn off lights etc.

	
machine.sleep([time_ms])

	
Note

This function is deprecated, use lightsleep() instead.

	
machine.lightsleep([time_ms])

	
machine.deepsleep([time_ms])

	Stops execution in an attempt to enter a low power state.

If time_ms is specified then this will be the maximum time in milliseconds that
the sleep will last for. Otherwise the sleep can last indefinitely.

With or without a timout, execution may resume at any time if there are events
that require processing. Such events, or wake sources, should be configured before
sleeping, like Pin change or RTC timeout.

The precise behaviour and power-saving capabilities of lightsleep and deepsleep is
highly dependent on the underlying hardware, but the general properties are:

	A lightsleep has full RAM and state retention. Upon wake execution is resumed
from the point where the sleep was requested, with all subsystems operational.

	A deepsleep may not retain RAM or any other state of the system (for example
peripherals or network interfaces). Upon wake execution is resumed from the main
script, similar to a hard or power-on reset. The reset_cause() function will
return machine.DEEPSLEEP and this can be used to distinguish a deepsleep wake
from other resets.

Difference for RI5

See below for the specifics of how this works in practice for RI5.

On the RI5, it’s not clear that these are going to be particularly useful.

	Lightsleep seems to potentially cut off the USB connection if you’re running
via the Mindstorms app, requiring you to restart the Hub and then the app
to regain connection between the two. It’s possible this is just a bug.

	Deepsleep obviously restarts the Hub from its startup script which will
put you back in the menu unless you’ve done extensive customization.
Although when you run a program after that it is then possible to check
for the DEEPSLEEP reset cause.

	It’s not clear exactly how power-saving these modes are on the RI5. In
tests, both seemed to turn the Hub LED red (or on one weird and memorable
occasion, green) for the duration of the sleep.

Difference for RI5

Function wake_reason() is not implemented for the RI5.

Miscellaneous functions

	
machine.info([verbose])

	
Difference for RI5

A function specific to the RI5.

Prints various information, including:

	ID = The hex of the unique_id()

	S = System Clock frequency. See freq() above.

	H = AHB (Advanced High-Performance Bus) Clock frequency. See freq() above.

	P1 = APB1 (Advanced Peripheral Bus 1) Clock frequency. See freq() above.

	P2 = APB2 (Advanced Peripheral Bus 2) Clock frequency. See freq() above.

	“qstr” section with similar information to micropython.qstr_info()

	“GC” section with similar information to micropython.mem_info()

	If the verbose parameter is defined then it also prints the GC memory
layout that you get from mem_info()’s verbose mode.

	
machine.unique_id()

	Returns a byte string with a unique identifier of a board/SoC. It will vary
from a board/SoC instance to another, if underlying hardware allows. Length
varies by hardware (so use substring of a full value if you expect a short
ID). In some MicroPython ports, ID corresponds to the network MAC address.

	
machine.time_pulse_us(pin, pulse_level, timeout_us=1000000)

	Time a pulse on the given pin, and return the duration of the pulse in
microseconds. The pulse_level argument should be 0 to time a low pulse
or 1 to time a high pulse.

If the current input value of the pin is different to pulse_level,
the function first (*) waits until the pin input becomes equal to pulse_level,
then (**) times the duration that the pin is equal to pulse_level.
If the pin is already equal to pulse_level then timing starts straight away.

The function will return -2 if there was timeout waiting for condition marked
(*) above, and -1 if there was timeout during the main measurement, marked (**)
above. The timeout is the same for both cases and given by timeout_us (which
is in microseconds).

Difference for RI5

Function rng() is not implemented for the RI5.

Memory Access

	
machine.mem8

	
machine.mem16

	
machine.mem32

	Supports machine memory access in 1-byte, 2-byte or 4-byte chunks. Access
is via indexing, where the index is the memory address of the beginning of
the chunk. (Attempts to use a wrongly aligned address for the chunk size
cause a ValueError.)

Beware that slicing doesn’t work properly and may cause a system failure!

On the RI5, be aware that 0 is a valid address: addressable memory goes from
0 to 1572863 (=0x17FFFF) inclusive, representing 1.5 MiB. Attempting to reference
addresses outside of this causes a system restart. Addresses from 0x08a670
seem to all return 0xFF values though so I’m not sure how useful anything
above this is…

The system lets you attempt to set address contents with memX[index] = value,
but it doesn’t seem to be effective - subsequent reads just show the old value
again.

Constants

Difference for RI5

IRQ wake value constants and wake-up reason constants are not present on the RI5.

	
machine.PWRON_RESET

	
machine.HARD_RESET

	
machine.WDT_RESET

	
machine.DEEPSLEEP_RESET

	
machine.SOFT_RESET

	Reset causes.

Classes

	class Pin – control I/O pins

	class Signal – control and sense external I/O devices

	class ADC – analog to digital conversion

	class UART – duplex serial communication bus

	class SPI – a Serial Peripheral Interface bus protocol (master side)

	class I2C – a two-wire serial protocol

	class RTC – real time clock

	class Timer – control hardware timers

	class WDT – watchdog timer

Classes from default Micropython not present on the Hub

	class ADCChannel - read analog values from internal or external sources

	class SD - secure digital memory card

class Pin – control I/O pins

A pin object is used to control I/O pins (also known as GPIO - general-purpose
input/output). Pin objects are commonly associated with a physical pin that can
drive an output voltage and read input voltages. The pin class has methods to set the mode of
the pin (IN, OUT, etc) and methods to get and set the digital logic level.
For analog control of a pin, see the ADC class.

A pin object is constructed by using an identifier which unambiguously
specifies a certain I/O pin. The allowed form of the identifier in the RI5 case
is a string that specifies the board-name or cpu-name of the pin. Pins can also be
selected via the cpu and board convenience classes within Pin.

Usage Model:

from machine import Pin

create an output pin on pin X0
p0 = Pin('X0', Pin.OUT)

set the value low then high
p0.value(0)
p0.value(1)

create an input pin on pin X1, with a pull up resistor
p2 = Pin('X1', Pin.IN, Pin.PULL_UP)

read and print the pin value
print(p2.value())

reconfigure pin X0 in input mode
p0.mode(p0.IN)

configure an irq callback
p0.irq(lambda p:print(p))

Constructors

	
class machine.Pin(id)

	

	
class machine.Pin(id, mode, pull=None, af=-1, * value, alt=-1)

	Access the pin peripheral (GPIO pin) associated with the given id. If
additional arguments are given in the constructor then they are used to initialise
the pin. If no settings are specified they will remain in their previous state.

The arguments are:

	id is mandatory and can be either an existing Pin object or a string
that identifies one. String identifiers can be either the cpu-name or the
board-name of a Pin.

	mode specifies the pin mode, which can be one of:

	Pin.IN - Pin is configured for input (i.e. for getting values
from the outside world into the CPU). If viewed as an output the pin
is in high-impedance state.

	Pin.OUT - Pin is configured for (normal) output (i.e. for letting
the program set values).

	Pin.OPEN_DRAIN - Pin is configured for open-drain output. Open-drain
output works in the following way: if the output value is set to 0 the pin
is active at a low level; if the output value is 1 the pin is in a high-impedance
state. Some pins may not implement this mode.

	Pin.ALT - Pin is configured to perform an alternative function. Available
alt-functions are specific to particular pins. For a pin configured in such a
way any other Pin methods (except Pin.init()) are not necessarily applicable
(calling them will lead to undefined, or a hardware-specific, result).

	Pin.ALT_OPEN_DRAIN - The Same as Pin.ALT, but the pin is configured as
open-drain. Not all ports implement this mode.

	Pin.ANALOG - The pin is configured as an analog input/output instead
of digital, and voltages will be read instead of binary 0/1 states. Use
the ADC class instead of the functions below on pins in this mode.
Some pins may not implement this mode.

	pull specifies if the pin has a (weak) pull resistor attached, and can be
one of:

	None/Pin.PULL_NONE - No pull up or down resistor.

	Pin.PULL_UP - Pull up resistor enabled.

	Pin.PULL_DOWN - Pull down resistor enabled.

	af is a legacy (positional) alternative to alt with exactly the same
values - the other parameter takes precedence over it.

	value is valid only for Pin.OUT and Pin.OPEN_DRAIN modes and specifies initial
output pin value if given, otherwise the state of the pin peripheral remains
unchanged.

	alt specifies an alternate function for the pin. The values it can take are
0-15, although whether these will do anything is pin-dependent. The alt argument
is valid only for Pin.ALT and Pin.ALT_OPEN_DRAIN modes and must be specified
for those modes. For other modes it is ignored.

As specified above, the Pin class allows to set an alternate function or analog mode
for a particular pin, but it does not specify any further operations on such a pin.
Pins configured in alternate-function or analog mode are usually not used as GPIO
but are instead driven by other hardware peripherals. Sometimes they may be usable
with other machine subclasses. The only Pin operation supported on such a pin is
re-initialising, by calling the constructor or Pin.init() method. If a pin
that is configured in alternate-function mode is re-initialised with Pin.IN,
Pin.OUT, or Pin.OPEN_DRAIN, the alternate function will be removed from the pin.

Methods

	
Pin.init(mode, pull=None, af=-1 *, value, alt=-1)

	Re-initialise the pin using the given parameters. If value is unspecified,
it will not be set, but the other arguments are always set (to the defaults
where suitable).

See the constructor documentation for details of the arguments.

Returns None.

Note that since this is modifying hardware state, changing parameters here
will be reflected in any other objects referencing the same physical pin.

	
Pin.value([x])

	This method allows to set and get the value of the pin, depending on whether
the argument x is supplied or not.

If the argument is omitted then this method gets the digital logic level of
the pin, returning 0 or 1 corresponding to low and high voltage signals
respectively. The behaviour of this method depends on the mode of the pin:

	Pin.IN - The method returns the actual input value currently present
on the pin.

	Pin.OUT - The behaviour and return value of the method is undefined.

	Pin.OPEN_DRAIN - If the pin is in state ‘0’ then the behaviour and
return value of the method is undefined. Otherwise, if the pin is in
state ‘1’, the method returns the actual input value currently present
on the pin.

If the argument is supplied then this method sets the digital logic level of
the pin. The argument x can be anything that converts to a boolean.
If it converts to True, the pin is set to state ‘1’, otherwise it is set
to state ‘0’. The behaviour of this method depends on the mode of the pin:

	Pin.IN - The value is stored in the output buffer for the pin. The
pin state does not change, it remains in the high-impedance state. The
stored value will become active on the pin as soon as it is changed to
Pin.OUT or Pin.OPEN_DRAIN mode.

	Pin.OUT - The output buffer is set to the given value immediately.

	Pin.OPEN_DRAIN - If the value is ‘0’ the pin is set to a low voltage
state. Otherwise the pin is set to high-impedance state.

When setting the value this method returns None.

Behaviour is undefined always for pins in ALT or ANALOG modes.

	
Pin.__call__([x])

	Pin objects are callable. The call method provides a (fast) shortcut to set
and get the value of the pin. It is equivalent to Pin.value([x]).
See Pin.value() for more details.

	
Pin.on()

	

	
Pin.high()

	Set pin to “1” output level.

	
Pin.off()

	

	
Pin.low()

	Set pin to “0” output level.

	
Pin.mode()

	Returns the pin mode in numeric form.
See the constructor documentation for details of the mode argument.
Unlike base MicroPython, the STM32 port doesn’t let you set mode with this
method.

	
Pin.pull()

	Returns the pin pull state in numeric form.
See the constructor documentation for details of the pull argument.
Unlike base MicroPython, the STM32 port doesn’t let you set pull with this
method.

	
Pin.irq(handler=None, trigger=Pin.IRQ_FALLING | Pin.IRQ_RISING, hard=False)

	Configure an interrupt handler to be called when the trigger source of the
pin is active. If the pin mode is Pin.IN then the trigger source is
the external value on the pin. If the pin mode is Pin.OUT then the
trigger source is the output buffer of the pin. Otherwise, if the pin mode
is Pin.OPEN_DRAIN then the trigger source is the output buffer for
state ‘0’ and the external pin value for state ‘1’.

The arguments (all optional and can be positonal or named) are:

	handler is an optional function to be called when the interrupt
triggers. The handler must take exactly one argument which is the
Pin instance.

	trigger configures the event which can generate an interrupt.
Possible values are:

	Pin.IRQ_FALLING interrupt on falling edge.

	Pin.IRQ_RISING interrupt on rising edge.

These values can be OR’ed together to trigger on multiple events.

	hard if true a hardware interrupt is used. This reduces the delay
between the pin change and the handler being called. Hard interrupt
handlers may not allocate memory; see Writing interrupt handlers.

This method returns None. Since it doesn’t return any kind of IRQ object,
there’s no way to turn the IRQ off again (presumably even when the program
exits) so this function will probably be of limited use on the RI5 unless
you want permanent control of a pin until the system is reset. And that’s
assuming you can make this work - all my attempts at using this function
either did nothing (on pins that had constant value) or crashed the system!

	
Pin.name()

	Returns the pin name. (This will be the CPU-based form.)

	
Pin.names()

	Returns a list containing the cpu- and board-based names for the pin in that
order.

	
Pin.af_list()

	Returns an array of alternate functions available for this pin, in the form
of constants like Pin.AF1_TIM1 and Pin.AF5_I2S4.

	
Pin.port()

	Returns the pin port in numeric form. (A=0 to H=7)

	
Pin.pin()

	Returns the pin number. (The 0-15 number of the pin that comes after the
port letter.)

	
Pin.gpio()

	Returns the base address of the GPIO block associated with this pin.

	
Pin.af()

	Returns the currently configured alternate function of the pin in numeric
form. This will match one of the allowed constants for the af argument
to init().

Class methods

Difference for RI5

These three functions define global behaviour which persists past the end
of a program back into the hub menu, and so could conceivably cause future
programs to break.

	
Pin.mapper([map_function])

	Given a parameter, stores a global mapping function, which should be a function
that takes a single string and returns a pin object. (ValueError is thrown
if it returns something else.) Once specified this function takes precedence
over the default way of mapping strings to Pins. It may return None, at which
point other lookup types are attempted.

With no parameter it returns the current mapper function.

	
Pin.dict(mapping_dict)

	Given a parameter, specifies a global dictionary to be used to map strings
to pin objects. If specified, this method of mapping takes precedence over
the default way of mapping strings to Pins. But the mapper function takes
precedence over this.

Note that nothing checks the output of this mapping to make sure it’s
actually returning a Pin object.

With no parameter it returns the current mapping dictionary.

	
Pin.debug(debug_info)

	Sets global debug information on/off according to the boolean debug_info.
Debug information (printed to stsandard output stream) tells you more about
how a given string is mapped to a Pin object.

Classes

	
class machine.board

	

	
class machine.cpu

	Two classes containing constant objects for all the pins on the
system. In the cpu class these take the raw form cpu.A0 to cpu.H1. (Port
letter plus pin number.) In the board class most are just named board.PA0 to
board.PH1, but some have been translated into more meaningful names:
A1 = board.BUTTON3_SW, A11 = board.USB_DM, A12 = board.USB_DP,
A14 = board.TEST_LED.

Difference for RI5

The more meaningful board names here appear to be unique to the RI5, or
at least I couldn’t find other sources for them all online.

Constants

The following constants are used to configure the pin objects.

	
Pin.IN = 0

	
Pin.OUT = 1

	
Pin.OPEN_DRAIN = 17

	
Pin.ALT = 2

	
Pin.ALT_OPEN_DRAIN = 18

	
Pin.ANALOG = 3

	Selects the pin mode.

	
Pin.PULL_NONE = 0

	
Pin.PULL_UP = 1

	
Pin.PULL_DOWN = 2

	Selects whether there is a pull up/down resistor.

	
Pin.IRQ_FALLING = 0x10210000

	
Pin.IRQ_RISING = 0x10110000

	Selects the IRQ trigger type.

	
Pin.OUT_PP = 1

	
Pin.OUT_OD = 17

	
Pin.AF_PP = 2

	
Pin.AF_OD = 18

	Legacy constants (synonyms for pin modes above).

	
Pin.AFx_*

	Lots of constants describing the possible alternate functions. These match
the alternate function numbers described at
https://github.com/micropython/micropython/blob/master/ports/stm32/boards/stm32f413_af.csv
or at least the subset that this board supports.

class Signal – control and sense external I/O devices

The Signal class is a simple extension of the Pin class. Unlike Pin, which
can be only in “absolute” 0 and 1 states, a Signal can be in “asserted”
(on) or “deasserted” (off) states, while being inverted (active-low) or
not. In other words, it adds logical inversion support to Pin functionality.
While this may seem a simple addition, it is exactly what is needed to
support wide array of simple digital devices in a way portable across
different boards, which is one of the major MicroPython goals. Regardless
of whether different users have an active-high or active-low LED, a normally
open or normally closed relay - you can develop a single, nicely looking
application which works with each of them, and capture hardware
configuration differences in few lines in the config file of your app.

Example:

from machine import Pin, Signal

Suppose you have an active-high LED on pin 0
led1_pin = Pin(0, Pin.OUT)
... and active-low LED on pin 1
led2_pin = Pin(1, Pin.OUT)

Now to light up both of them using Pin class, you'll need to set
them to different values
led1_pin.value(1)
led2_pin.value(0)

Signal class allows to abstract away active-high/active-low
difference
led1 = Signal(led1_pin, invert=False)
led2 = Signal(led2_pin, invert=True)

Now lighting up them looks the same
led1.value(1)
led2.value(1)

Even better:
led1.on()
led2.on()

Following is the guide when Signal vs Pin should be used:

	Use Signal: If you want to control a simple on/off (including software
PWM!) devices like LEDs, multi-segment indicators, relays, buzzers, or
read simple binary sensors, like normally open or normally closed buttons,
pulled high or low, Reed switches, moisture/flame detectors, etc. etc.
Summing up, if you have a real physical device/sensor requiring GPIO
access, you likely should use a Signal.

	Use Pin: If you implement a higher-level protocol or bus to communicate
with more complex devices.

The split between Pin and Signal come from the usecases above and the
architecture of MicroPython: Pin offers the lowest overhead, which may
be important when bit-banging protocols. But Signal adds additional
flexibility on top of Pin, at the cost of minor overhead (much smaller
than if you implemented active-high vs active-low device differences in
Python manually!). Also, Pin is a low-level object which needs to be
implemented for each support board, while Signal is a high-level object
which comes for free once Pin is implemented.

If in doubt, give the Signal a try! Once again, it is offered to save
developers from the need to handle unexciting differences like active-low
vs active-high signals, and allow other users to share and enjoy your
application, instead of being frustrated by the fact that it doesn’t
work for them simply because their LEDs or relays are wired in a slightly
different way.

Constructors

	
class machine.Signal(pin_obj, invert=False)

	
class machine.Signal(pin_arguments..., *, invert=False)

	Create a Signal object. There’re two ways to create it:

	By wrapping existing Pin object - universal method which works for
any board.

	By passing required Pin parameters directly to Signal constructor,
skipping the need to create intermediate Pin object.

The arguments are:

	pin_obj is existing Pin object.

	pin_arguments are the same arguments as can be passed to Pin constructor.

	invert - if True, the signal will be inverted (active low).

Methods

	
Signal.value([x])

	This method allows to set and get the value of the signal, depending on whether
the argument x is supplied or not.

If the argument is omitted then this method gets the signal level, 1 meaning
signal is asserted (active) and 0 - signal inactive.

If the argument is supplied then this method sets the signal level. The
argument x can be anything that converts to a boolean. If it converts
to True, the signal is active, otherwise it is inactive.

Correspondence between signal being active and actual logic level on the
underlying pin depends on whether signal is inverted (active-low) or not.
For non-inverted signal, active status corresponds to logical 1, inactive -
to logical 0. For inverted/active-low signal, active status corresponds
to logical 0, while inactive - to logical 1.

	
Signal.on()

	Activate signal.

	
Signal.off()

	Deactivate signal.

class ADC – analog to digital conversion

Read analog values from a pin.

Difference for RI5

Functions channel() (and associated class), init() and deinit()
are not implemented for the RI5. Instead the read_u16() function allows
analog reading, and the constants below are added too.

Constructors

	
class machine.ADC(channel)

	Create an ADC object with the given channel (a signed integer). This
allows you to then read analog values on that channel. It’s not clear to
me yet what sources most of these channels represent - every one I tried
did receive data from somewhere… The constants below seem to represent
a few important ones though.

	
class machine.ADC(pin)

	Create an ADC object from the given Pin object/pin name string.

On the RI5, this seems to be possible only on pins A0, B0, B1, C0-5
(although using it on C2 or C3 seems to conflict with something in the
firmware, causing runtime errors after use).

Methods

	
machine.read_u16()

	Read the current channel value.

Constants

Channel numbers to get particular information from.

	
machine.ADC.VREF = 65535

	According to the STM32 port code, this channel just constantly reports the
maximum ADC value, which seems to be 65535.

	
machine.ADC.CORE_VREF = 17

	Perhaps this is core voltage data? In a test it seemed to get a
variety of values of the form 0x3??3 (from 0x3B23 to 0x3CB3) and 0x4??4
(from 0x4274 to 0x45A4).

	
machine.ADC.CORE_TEMP = 16

	Presumably gets core temperature sensor data. Running at room temperature I
was seeing integer values around 11026 (0x2B12), varying in multiples of 16
to around +-200. Possibly the last hex digit is not relevant given the fact
that it always seems to be the same as the first in these readings?

	
machine.ADC.CORE_VBAT = 18

	Presumably this gets battery charge or voltage level data? In a test it
seemed to get integer values around 2768 (0x0AD0), varying in multiples of 16
to around +-150. Possibly the last hex digit is not relevant given the fact
that it always seems to be the same as the first in these readings?

Other Experiments

Experiments often showed slightly different initial values settling down to a
more steady range of values. I also found the sources for the rest of the
channels below 16, apart from channel 1:

A0 for a while reported values from 0x1341 to 0x1501. Printing the ADC showed
it’s probably equal to channel 0 (i.e. ADC(0)).

A2 for a while reported values from 0x1001 to 0x1041. It presents as channel 2.

A3 for a while reported values from 0x11A1 to 0x12B1. It presents as channel 3.

A4 for a while reported values from 0x1041 to 0x1101. It presents as channel 4.

A5 for a while reported values from 0x1181 to 0x12A1. It presents as channel 5.

A6 for a while reported values from 0x0FB0 to 0x1011. It presents as channel 6.

A7 for a while reported values from 0x1241 to 0x1391. It presents as channel 7.

B0 for a while reported values from 0x25C2 to 0x2672. It presents as channel 8.

B1 for a while reported values from 0x11C1 to 0x1471. It presents as channel 9.

C0 for a while reported values from 0x10F1 to 0x1221. It presents as channel 10.

C1 for a while reported values from 0x3003 to 0x3173 and on another occasion
reported values from 0xB23B to 0xBA8B. It presents as channel 11.

C2 for a while reported values from 0x1331 to 0x1EA1. It presents as channel
12. Although if you access channel 12 directly you tend to get much lower
values it seems, and no runtime errors…

C3 gave two much higher readings of 0xAFEA and 0x2152, then settled down into
lower readings between 0x1241 and 0x1551. It presents as channel 13, but if
you access channel 12 directly you tend to get much lower values it seems, and
no runtime errors…

C4 for a while reported values from 0xA0AA to 0xCA9C. It presents as channel 14.

C5 gave one much higher reading of 0x4E94, then for a while reported values
from 0x0860 to 0x0AB0. It presents as channel 15.

class UART – duplex serial communication bus

UART implements the standard UART/USART duplex serial communications protocol. At
the physical level it consists of 2 lines: RX and TX. The unit of communication
is a character (not to be confused with a string character) which can be 8 or 9
bits wide.

UART objects can be created and initialised using:

from machine import UART

uart = UART(1, 9600) # init with given baudrate
uart.init(9600, bits=8, parity=None, stop=1) # init with given parameters

Supported parameters differ on different boards.

On the RI5, it appears that no UARTs are actually available - at least I
couldn’t find an ID that would allow me to create one. So available
parameters are unknown and the rest of this section is a little light on
RI5-specific detail as it’s difficult to do experiments when you can’t create
the base object! It’s based on the STM32 port code instead since that’ll
probably be quite similar…

A UART object acts like a stream object and reading and writing is done
using the standard stream methods:

uart.read(10) # read 10 characters, returns a bytes object
uart.read() # read all available characters
uart.readline() # read a line
uart.readinto(buf) # read and store into the given buffer
uart.write('abc') # write the 3 characters

Constructors

	
class machine.UART(id, ...)

	Construct a UART object of the given id. Any additional parameters are
passed on to the init function.

Methods

	
UART.init(baudrate=9600, bits=8, parity=None, stop=1, *, ...)

	Initialise the UART bus with the given parameters:

	baudrate is the clock rate.

	bits is the number of bits per character. Can be 8 or 9.

	parity is the parity, None, 0 (even) or 1 (odd).

	stop is the number of stop bits, 1 or 2.

	timeout is the timeout in milliseconds to wait for the first character.

	timeout_char is the timeout in milliseconds to wait between characters.

	flow is RTS | CTS where RTS == 256, CTS == 512

	read_buf_len is the character length of the read buffer (0 to disable).

	
UART.deinit()

	Turn off the UART bus.

	
UART.any()

	Returns an integer counting the number of characters that can be read without
blocking. It will return 0 if there are no characters available and a positive
number if there are characters. The method may return 1 even if there is more
than one character available for reading.

For more sophisticated querying of available characters use select.poll:

poll = select.poll()
poll.register(uart, select.POLLIN)
poll.poll(timeout)

	
UART.read([nbytes])

	Read characters. If nbytes is specified then read at most that many bytes,
otherwise read as much data as possible.

Return value: a bytes object containing the bytes read in. Returns None
on timeout.

	
UART.readinto(buf[, nbytes])

	Read bytes into the buf. If nbytes is specified then read at most
that many bytes. Otherwise, read at most len(buf) bytes.

Return value: number of bytes read and stored into buf or None on
timeout.

	
UART.readline()

	Read a line, ending in a newline character.

Return value: the line read or None on timeout.

	
UART.readchar()

	Receive a single character, and return it as an integer (or -1 on timeout).

	
UART.write(buf)

	Write the buffer of bytes to the bus.

Return value: number of bytes written or None on timeout.

	
UART.writechar(char)

	Write a single character to the bus. char is the integer to write.
Returns None.

	
UART.sendbreak()

	Send a break condition on the bus. This drives the bus low for a duration
longer than required for a normal transmission of a character.

	
UART.irq(trigger=0, hard=False, handler=None)

	Create a callback to be triggered when data is received on the UART.

	trigger can only be UART.IRQ_RXIDLE

	hard seems to specify whether it’s a hardware or software interrupt?

	handler an optional function to be called when new characters arrive.

Note

The handler will be called whenever any of the following two conditions are met:

	8 new characters have been received.

	At least 1 new character is waiting in the Rx buffer and the Rx line has been
silent for the duration of 1 complete frame.

This means that when the handler function is called there will be between 1 to 8
characters waiting.

Returns an irq object.

Constants

	
UART.RTS = 256

	Flow parameter setting for initialization.

	
UART.CTS = 512

	Flow parameter setting for initialization.

	
UART.IRQ_RXIDLE = 16

	IRQ flag “idle”. (Replaces UART.RX_ANY from the base documentation.)

class SPI – a Serial Peripheral Interface bus protocol (master side)

SPI is a synchronous serial protocol that is driven by a master. At the
physical level, a bus consists of 3 lines: SCK, MOSI, MISO. Multiple devices
can share the same bus. Each device should have a separate, 4th signal,
SS (Slave Select), to select a particular device on a bus with which
communication takes place. Management of an SS signal should happen in
user code (via machine.Pin class).

Constructors

	
class machine.SPI(id=-1, ...)

	Construct an SPI object on the given bus, id. Values of id depend
on a particular port and its hardware. Values 0, 1, etc. are commonly used
to select hardware SPI block #0, #1, etc. Value -1 can be used for
bitbanging (software) implementation of SPI. In this case sck/mosi/miso
parameters must be specified.

Any extra parameters are passed to init().

Difference for RI5

Unlike the specification in the base MicroPython docs, this constructor
seems to always call init(), whether or not more parameters are
provided to it.

Difference for RI5

The hardware SPI blocks on the RI5 and their default details are shown below.
Pin details aren’t printed when printing the object, so they’ve been
deduced from machine.Pin() printing and
https://github.com/micropython/micropython/blob/master/ports/stm32/boards/stm32f413_af.csv.

All SPIs have default baudrate=375000, polarity=0, phase=0, bits=8. Be
careful with altering or deinitializing any of these, as any changes will
persist beyond the life of your program, and can cause system failure.

SPI(1) - MISO=A6, MOSI=A7, SCK=A5, NSS=A4 or A15(?).
No obvious effect if you slow it down or speed it up, but if you deinit it,
the system slows to a crawl… A basic read gets the following set of bytes
followed by zeros: 0,0,0,0,0,0,0x2F,0xC0,0,0,0,0,0x11,0x80,0x23,0,0x7F,0x80.

SPI(2) - MISO=C2, MOSI=C3, SCK=B13, NSS=A11 or B9 or B12(?).
Seems to affect lots of systems like the screen/sound/lights/program loading
if you slow it down… A basic read gets all zeros.

SPI(3) - MISO=B4, MOSI=B5, SCK=B3 or B12 or C10(?), NSS=A4 or A15(?).
No obvious effect if you slow it down or deinit it. A basic read gets one zero
and times out if you read more than one byte at a time.

Methods

	
SPI.init(baudrate=500000, *, polarity=0, phase=0, bits=8, firstbit=SPI.MSB, sck=None, mosi=None, miso=None)

	Initialise the SPI bus with the given parameters:

	baudrate is the SCK clock rate. Note that the default value isn’t an
available hardware baudrate, so those actually default to 375000 in
practice.

	polarity can be 0 or 1, and is the level the idle clock line sits at.
(Although it can actually take any byte value.)

	phase can be 0 or 1 to sample data on the first or second clock edge
respectively. (Although it can actually take any byte value.)

	bits is the width in bits of each transfer. Must be 8.

	firstbit must be SPI.MSB (0).

	sck, mosi, miso are pins (machine.Pin) objects (or strings
naming pins) to use for bus signals. For most hardware SPI blocks (as
selected by id parameter to the constructor), pins are fixed and
cannot be changed. In some cases, hardware blocks allow 2-3 alternative pin sets for
a hardware SPI block. Arbitrary pin assignments are possible only for a bitbanging SPI driver
(id = -1).

The actual clock frequency may be lower than the requested baudrate. They
are rounded down to the nearest available one. On RI5:

Hardware baudrates: 12000000, 6000000, 3000000, 1500000, 750000, 375000, 187500, 93750

Software baudrates = 16000000/(32*N) = 500000, 250000, 166666, 125000, 100000, 83333, …, 1

The actual rate may be determined by printing the SPI object.

	
SPI.deinit()

	Turn off the SPI bus.

	
SPI.read(nbytes, write=0)

	Read a number of bytes specified by nbytes while continuously writing
the single byte given by write.
Returns a bytes object with the data that was read.

	
SPI.readinto(buf, write=0)

	Read into the buffer specified by buf while continuously writing the
single byte given by write.
Returns None.

	
SPI.write(buf)

	Write the bytes contained in buf.
Returns None.

	
SPI.write_readinto(write_buf, read_buf)

	Write the bytes from write_buf while reading into read_buf. The
buffers can be the same or different, but both buffers must have the
same length.
Returns None.

Constants

	
SPI.MSB = 0

	set the first bit to be the most significant bit

	
SPI.LSB = 128

	Set the first bit to be the least significant bit. (Cannot be used on RI5.)

class I2C – a two-wire serial protocol

I2C is a two-wire protocol for communicating between devices. At the physical
level it consists of 2 wires: SCL and SDA, the clock and data lines respectively.

I2C objects are created attached to a specific bus. They can be initialised
when created, or initialised later on.

Printing the I2C object gives you information about its configuration.

Example usage:

from machine import I2C

i2c = I2C(freq=400000) # create I2C peripheral at frequency of 400kHz
 # (in this port, actually scl and sda parameters also required)

i2c.scan() # scan for slaves, returning a list of 7-bit addresses

i2c.writeto(42, b'123') # write 3 bytes to slave with 7-bit address 42
i2c.readfrom(42, 4) # read 4 bytes from slave with 7-bit address 42

i2c.readfrom_mem(42, 8, 3) # read 3 bytes from memory of slave 42,
 # starting at memory-address 8 in the slave
i2c.writeto_mem(42, 2, b'\x10') # write 1 byte to memory of slave 42
 # starting at address 2 in the slave

Constructors

	
class machine.I2C(id=-1, *, scl, sda, freq=400000, timeout=?)

	Construct and return a new I2C object using the following parameters:

	id identifies a particular I2C peripheral. The default
value of -1 selects a software implementation of I2C which can
work (in most cases) with arbitrary pins for SCL and SDA.
If id is -1 then scl and sda must be specified. Other
allowed values for id on the RI5 are 1 and 3 (see below) - in these
cases specifying scl/sda is not allowed, and freq seems to be ignored.

	scl should be a pin object/string specifying the pin to use for SCL.

	sda should be a pin object/string specifying the pin to use for SDA.

	freq should be an integer which sets the maximum frequency
for SCL.

	the timeout parameter isn’t documented in base MicroPython, so it’s
not quite clear what it’s meant to do or what the default is.

Printing I2C(1) or I2C(3) shows its pin/freq details, printing a custom
I2C shows nothing much.

Setting a custom I2C on the same pins as a pre-existing one is accepted,
but it does seem to modify behaviour of the pre-existing one. (Though so
far that’s meant just different error codes in my experiments - ETIMEDOUT
rather than ENODEV/EINVAL.)

I2C ids on the RI5

	I2C(1, scl=B6, sda=B7, freq=480000)

	I2C(3, scl=A8, sda=C9, freq=480000)

General Methods

	
I2C.init(scl, sda, *, freq=400000)

	Initialise the I2C bus with the given arguments:

	scl is a pin object or string name of a pin for the SCL line

	sda is a pin object or string name of a pin for the SDA line

	freq is the SCL clock rate

It’s not clear whether user-defined I2Cs on RI5 can actually have parameters
successfully changed with this function. Certainly attempting to use this
function on I2C(1) or I2C(3) causes system failure.

Difference for RI5

Function deinit() to turn off the bus is not available on RI5.

	
I2C.scan()

	Scan all I2C addresses between 0x08 and 0x77 inclusive and return a list of
those that respond. A device responds if it pulls the SDA line low after
its address (including a write bit) is sent on the bus.

On RI5, scans of I2C(1) and I2C(3) seem to just return [].

Primitive I2C operations

The following methods implement the primitive I2C master bus operations and can
be combined to make any I2C transaction. They are provided if you need more
control over the bus, otherwise the standard methods (see below) can be used.

These methods are available on software I2C only. They tend to throw an OSError
of ETIMEDOUT if things aren’t set up correctly to accept I2C commands.

	
I2C.start()

	Generate a START condition on the bus (SDA transitions to low while SCL is high).

	
I2C.stop()

	Generate a STOP condition on the bus (SDA transitions to high while SCL is high).

	
I2C.readinto(buf, nack=True)

	Reads bytes from the bus and stores them into buf. The number of bytes
read is the length of buf. An ACK will be sent on the bus after
receiving all but the last byte. After the last byte is received, if nack
is true then a NACK will be sent, otherwise an ACK will be sent (and in this
case the slave assumes more bytes are going to be read in a later call).

	
I2C.write(buf)

	Write the bytes from buf to the bus. Checks that an ACK is received
after each byte and stops transmitting the remaining bytes if a NACK is
received. The function returns the number of ACKs that were received.

Standard bus operations

The following methods implement the standard I2C master read and write
operations that target a given slave device.

	
I2C.readfrom(addr, nbytes, stop=True)

	Read nbytes from the slave specified by addr.
If stop is true then a STOP condition is generated at the end of the transfer.
Returns a bytes object with the data read.

	
I2C.readfrom_into(addr, buf, stop=True)

	Read into buf from the slave specified by addr.
The number of bytes read will be the length of buf.
If stop is true then a STOP condition is generated at the end of the transfer.

The method returns None.

	
I2C.writeto(addr, buf, stop=True)

	Write the bytes from buf to the slave specified by addr. If a
NACK is received following the write of a byte from buf then the
remaining bytes are not sent. If stop is true then a STOP condition is
generated at the end of the transfer, even if a NACK is received.
The function returns the number of ACKs that were received.

	
I2C.writevto(addr, vector, stop=True)

	Write the bytes contained in vector to the slave specified by addr.
vector should be a tuple or list of objects with the buffer protocol.
The addr is sent once and then the bytes from each object in vector
are written out sequentially. The objects in vector may be zero bytes
in length in which case they don’t contribute to the output.

If a NACK is received following the write of a byte from one of the
objects in vector then the remaining bytes, and any remaining objects,
are not sent. If stop is true then a STOP condition is generated at
the end of the transfer, even if a NACK is received. The function
returns the number of ACKs that were received.

Memory operations

Some I2C devices act as a memory device (or set of registers) that can be read
from and written to. In this case there are two addresses associated with an
I2C transaction: the slave address and the memory address. The following
methods are convenience functions to communicate with such devices.

	
I2C.readfrom_mem(addr, memaddr, nbytes, *, addrsize=8)

	Read nbytes from the slave specified by addr starting from the memory
address specified by memaddr.
The argument addrsize specifies the address size in bits.
Returns a bytes object with the data read.

	
I2C.readfrom_mem_into(addr, memaddr, buf, *, addrsize=8)

	Read into buf from the slave specified by addr starting from the
memory address specified by memaddr. The number of bytes read is the
length of buf.
The argument addrsize specifies the address size in bits.

The method returns None.

	
I2C.writeto_mem(addr, memaddr, buf, *, addrsize=8)

	Write buf to the slave specified by addr starting from the
memory address specified by memaddr.
The argument addrsize specifies the address size in bits.

The method returns None.

class RTC – real time clock

The RTC is an independent clock that keeps track of the date
and time. As noted in the utime module, it defaults to 2015-01-01 00:00:00 UTC
and only seems to start running when it’s used (calling any of the functions below
except info() will start it running.)

Example usage:

rtc = machine.RTC()
rtc.datetime((2014, 5, 1, 4, 13, 0, 0, 0))
print(rtc.datetime())

Constructors

	
class machine.RTC

	Create an RTC object.

Methods

	
RTC.datetime([datetimetuple])

	Get or set the date and time of the RTC.

With no arguments, this method returns an 8-tuple with the current
date and time. With 1 argument (being an 8-tuple) it sets the date
and time (and subseconds is reset to 255).

The 8-tuple has the following format:

(year, month, day, weekday, hours, minutes, seconds, subseconds)

weekday is 1-7 for Monday through Sunday.

subseconds counts down from 255 to 0

Very little error-checking seems to be done on the input values so be
aware that the RTC will try to work with whatever you give it, with
potentially undefined results. It won’t successfully set years below 2000
though.

	
RTC.wakeup(timeout, callback=None)

	Set the RTC wakeup timer to trigger repeatedly at every timeout
milliseconds.

If timeout is None then the wakeup timer is disabled.

If callback is given then it is executed at every trigger of the
wakeup timer. callback must take exactly one argument. It’s not
clear what this does - it appears to be uninitialised on entry.

	
RTC.info()

	Get information about the startup time and reset source. If the RTC hasn’t
yet been started, this seems to take value 1056964608 (= 0x3F000000).
Otherwise, it’s not quite clear what the value means - in experiments it
always seems to have high bit 0x20000000 set, and then some value in the
lower 0xFFFF. Base MicroPython docs claim:

	The lower 0xffff are the number of milliseconds the RTC took to
start up.

	Bit 0x10000 is set if a power-on reset occurred.

	Bit 0x20000 is set if an external reset occurred

But on the RI5 I’ve seen lower bit values of 16658 and 27119 which don’t
seem to correspond to a startup time…

	
RTC.calibration(cal)

	Get or set RTC calibration.

With no arguments, calibration() returns the current calibration
value, which is an integer in the range [-511 : 512]. With one
argument it sets the RTC calibration.

The RTC Smooth Calibration mechanism adjusts the RTC clock rate by
adding or subtracting the given number of ticks from the 32768 Hz
clock over a 32 second period (corresponding to 2^20 clock ticks.)
Each tick added will speed up the clock by 1 part in 2^20, or 0.954
ppm; likewise the RTC clock it slowed by negative values. The
usable calibration range is:
(-511 * 0.954) ~= -487.5 ppm up to (512 * 0.954) ~= 488.5 ppm

Default calibration on the RI5 is 0, although it’s presumably likely to
vary by system (and maybe even vary over time?) what value is best to
make the RTC approximate real time.

class Timer – control hardware timers

Hardware timers deal with timing of periods and events. Timers are perhaps
the most flexible and heterogeneous kind of hardware in MCUs and SoCs,
differently greatly from a model to a model. MicroPython’s Timer class
defines a baseline operation of executing a callback with a given period
(or once after some delay), and allow specific boards to define more
non-standard behavior (which thus won’t be portable to other boards).

See discussion of important constraints on
Timer callbacks.

Note

Memory can’t be allocated inside irq handlers (an interrupt) and so
exceptions raised within a handler don’t give much information. See
micropython.alloc_emergency_exception_buf() for how to get around this
limitation.

Difference for RI5

This Timer class seems to be a bit broken in RI5, or at least it doesn’t
play nicely with the firmware - system failures that require pulling the battery
and USB seem almost inevitable when trying to use init(), deinit() or
Timer.PERIODIC. (Basically the only thing that will work is a Timer
that’s initialized on construction, runs once and then is discarded.)
Periodic Timers will work, but of course you can’t shut them off successfully
and they will still try to pop after the program has ended, causing (you
guessed it) system failure.

What you’d use instead seems a bit dependent on other requirements of your
program - there’s no obvious drop-in replacement for all circumstances.

Constructors

	
class machine.Timer(id=-1, ...)

	Construct a new virtual timer object. Id must equal -1 or be omitted. If
more arguments are provided, this runs the init() function with them,
causing the timer to be started. See init() below for a list.

Difference for RI5

Base MicroPython allows for various positive id values, specifying
particular hardware timers. The RI5 seems to only allow -1 for a virtual
timer, and the number may alternatively be omitted entirely.

In RI5 the only way to run init() successfully seems to be via this
constructor - running the constructor with no extra parameters seems to
leave the Timer in a weird half-initialized state that will cause system
failure if you try to run init() or deinit() on it subsequently.

Methods

	
Timer.init(*, mode=Timer.PERIODIC, period=-1, callback=None, freq=None)

	Initialise the timer. Example:

tim.init(period=100) # periodic with 100ms period
tim.init(mode=Timer.ONE_SHOT, period=1000) # one shot firing after 1000ms

Keyword arguments:

	mode can be one of:

	Timer.ONE_SHOT - The timer runs once until the configured
period of the channel expires.

	Timer.PERIODIC - The timer runs periodically at the configured
frequency of the channel.

	freq

	period

If specified, freq indicates the Hz frequency of when the timer will pop.
Otherwise, period sets the number of milliseconds until the pop. A
negative or zero value period or frequency causes an immediate pop.

	callback

Specifies a function to run when the timer pops. This function must have
one positional argument, which will be passed the Timer when it pops.

Difference for RI5

The STM32 port of Micropython (on which this seems to be based) has some
extra possible arguments for this function for fuller control over how
the Timer works.

Difference for RI5

Note as above - calling this function on any existing Timer on the RI5
(whether it’s stopped or started) causes system failure! Use the
constructor only, or give up on this class for the moment.

	
Timer.deinit()

	Deinitialises the timer. Stops the timer.

Difference for RI5

Note as above - calling this function on any existing Timer on the RI5
(whether it’s stopped or started) causes system failure! If you need a
Timer that can be halted, you’ll have to find something else for the
moment.

Constants

	
Timer.ONE_SHOT = 1

	
Timer.PERIODIC = 2

	Timer operating mode.

class WDT – watchdog timer

The WDT is used to restart the system when the application crashes and ends
up into a non recoverable state. Once started it cannot be stopped or
reconfigured in any way. After enabling, the application must “feed” the
watchdog periodically to prevent it from expiring and resetting the system.

Note that on the RI5, the WDT will continue running after a program ends, and
it will still reset the system if it expires during another program or in the
menu system. A hard reset will get rid of it though.

Example usage:

from machine import WDT
wdt = WDT(timeout=2000) # enable it with a timeout of 2s
wdt.feed()

Constructors

	
class machine.WDT(id=0, timeout=5000)

	Create a WDT object and start it. The timeout must be given in seconds and
the minimum value that is accepted is 1 second. Once it is running the timeout
cannot be changed and the WDT cannot be stopped either.

Methods

	
wdt.feed()

	Feed the WDT to prevent it from resetting the system. The application
should place this call in a sensible place ensuring that the WDT is
only fed after verifying that everything is functioning correctly.

On the RI5, note that if you’ve used a particular WDT before ever, feeding
it starts it running, even if it wasn’t running after a reset! The system
seems to remember that a WDT has been used even after a full power off,
although it may reset to the default timeout.

micropython – access and control MicroPython internals

Functions

	
micropython.const(expr)

	Used to declare that the expression is a constant so that the compile can
optimise it. The use of this function should be as follows:

from micropython import const

CONST_X = const(123)
CONST_Y = const(2 * CONST_X + 1)

Constants declared this way are still accessible as global variables from
outside the module they are declared in. On the other hand, if a constant
begins with an underscore then it is hidden, it is not available as a global
variable, and does not take up any memory during execution.

This const function is recognised directly by the MicroPython parser and is
provided as part of the micropython module mainly so that scripts can be
written which run under both CPython and MicroPython, by following the above
pattern.

	
micropython.opt_level([level])

	If level is given then this function sets the optimisation level for subsequent
compilation of scripts, and returns None. Otherwise it returns the current
optimisation level.

The optimisation level controls the following compilation features:

	Assertions: at level 0 assertion statements are enabled and compiled into the
bytecode; at levels 1 and higher assertions are not compiled.

	Built-in __debug__ variable: at level 0 this variable expands to True;
at levels 1 and higher it expands to False.

	Source-code line numbers: at levels 0, 1 and 2 source-code line number are
stored along with the bytecode so that exceptions can report the line number
they occurred at; at levels 3 and higher line numbers are not stored.

The default optimisation level is usually level 0.

	
micropython.alloc_emergency_exception_buf(size)

	Allocate size bytes of RAM for the emergency exception buffer (a good
size is around 100 bytes). The buffer is used to create exceptions in cases
when normal RAM allocation would fail (eg within an interrupt handler) and
therefore give useful traceback information in these situations.

A good way to use this function is to put it at the start of your main script
(eg boot.py or main.py) and then the emergency exception buffer will be active
for all the code following it.

	
micropython.mem_info([verbose])

	Print information about currently used memory. If the verbose argument
is given then extra information is printed.

The information that is printed is implementation dependent, but currently
includes the amount of stack and heap used. In verbose mode it prints out
the entire heap indicating which blocks are used and which are free.

	
micropython.qstr_info([verbose])

	Print information about currently interned strings. If the verbose
argument is given then extra information is printed.

The information that is printed is implementation dependent, but currently
includes the number of interned strings and the amount of RAM they use. In
verbose mode it prints out the names of all RAM-interned strings.

	
micropython.stack_use()

	Return an integer representing the current amount of stack that is being
used. The absolute value of this is not particularly useful, rather it
should be used to compute differences in stack usage at different points.

	
micropython.pystack_use()

	An undocumented base-Micropython function. Return an integer presumably
representing the current amount of stack being used by the “Pystack”. I’m
not sure whether that’s a subset of the other stack or separate though! Or
what the difference is…

	
micropython.heap_lock()

	

	
micropython.heap_unlock()

	Lock or unlock the heap. When locked no memory allocation can occur and a
MemoryError will be raised if any heap allocation is attempted.

These functions can be nested, ie heap_lock() can be called multiple times
in a row and the lock-depth will increase, and then heap_unlock() must be
called the same number of times to make the heap available again.

If the REPL becomes active with the heap locked then it will be forcefully
unlocked.

	
micropython.kbd_intr(chr)

	Set the character that will raise a KeyboardInterrupt exception. By
default this is set to 3 during script execution, corresponding to Ctrl-C.
Passing -1 to this function will disable capture of Ctrl-C, and passing 3
will restore it.

This function can be used to prevent the capturing of Ctrl-C on the
incoming stream of characters that is usually used for the REPL, in case
that stream is used for other purposes.

	
micropython.schedule(func, arg)

	Schedule the function func to be executed “very soon”. The function
is passed the value arg as its single argument. “Very soon” means that
the MicroPython runtime will do its best to execute the function at the
earliest possible time, given that it is also trying to be efficient, and
that the following conditions hold:

	A scheduled function will never preempt another scheduled function.

	Scheduled functions are always executed “between opcodes” which means
that all fundamental Python operations (such as appending to a list)
are guaranteed to be atomic.

	A given port may define “critical regions” within which scheduled
functions will never be executed. Functions may be scheduled within
a critical region but they will not be executed until that region
is exited. An example of a critical region is a preempting interrupt
handler (an IRQ).

A use for this function is to schedule a callback from a preempting IRQ.
Such an IRQ puts restrictions on the code that runs in the IRQ (for example
the heap may be locked) and scheduling a function to call later will lift
those restrictions.

Note: If schedule() is called from a preempting IRQ, when memory
allocation is not allowed and the callback to be passed to schedule() is
a bound method, passing this directly will fail. This is because creating a
reference to a bound method causes memory allocation. A solution is to
create a reference to the method in the class constructor and to pass that
reference to schedule(). This is discussed in detail here
reference documentation under “Creation of Python
objects”.

There is a finite stack to hold the scheduled functions and schedule()
will raise a RuntimeError if the stack is full.

uctypes – access binary data in a structured way

This module implements “foreign data interface” for MicroPython. The idea
behind it is similar to CPython’s ctypes modules, but the actual API is
different, streamlined and optimized for small size. The basic idea of the
module is to define data structure layout with about the same power as the
C language allows, and then access it using familiar dot-syntax to reference
sub-fields.

Warning

uctypes module allows access to arbitrary memory addresses of the
machine (including I/O and control registers). Uncareful usage of it
may lead to crashes, data loss, and even hardware malfunction.

See also

	Module ustruct
	Standard Python way to access binary data structures (doesn’t scale
well to large and complex structures).

Usage examples:

import uctypes

Example 1: Subset of ELF file header
https://wikipedia.org/wiki/Executable_and_Linkable_Format#File_header
ELF_HEADER = {
 "EI_MAG": (0x0 | uctypes.ARRAY, 4 | uctypes.UINT8),
 "EI_DATA": 0x5 | uctypes.UINT8,
 "e_machine": 0x12 | uctypes.UINT16,
}

"f" is an ELF file opened in binary mode
buf = f.read(uctypes.sizeof(ELF_HEADER, uctypes.LITTLE_ENDIAN))
header = uctypes.struct(uctypes.addressof(buf), ELF_HEADER, uctypes.LITTLE_ENDIAN)
assert header.EI_MAG == b"\x7fELF"
assert header.EI_DATA == 1, "Oops, wrong endianness. Could retry with uctypes.BIG_ENDIAN."
print("machine:", hex(header.e_machine))

Example 2: In-memory data structure, with pointers
COORD = {
 "x": 0 | uctypes.FLOAT32,
 "y": 4 | uctypes.FLOAT32,
}

STRUCT1 = {
 "data1": 0 | uctypes.UINT8,
 "data2": 4 | uctypes.UINT32,
 "ptr": (8 | uctypes.PTR, COORD),
}

Suppose you have address of a structure of type STRUCT1 in "addr"
uctypes.NATIVE is optional (used by default)
struct1 = uctypes.struct(addr, STRUCT1, uctypes.NATIVE)
print("x:", struct1.ptr[0].x)

Example 3: Access to CPU registers. Subset of STM32F4xx WWDG block
WWDG_LAYOUT = {
 "WWDG_CR": (0, {
 # BFUINT32 here means size of the WWDG_CR register
 "WDGA": 7 << uctypes.BF_POS | 1 << uctypes.BF_LEN | uctypes.BFUINT32,
 "T": 0 << uctypes.BF_POS | 7 << uctypes.BF_LEN | uctypes.BFUINT32,
 }),
 "WWDG_CFR": (4, {
 "EWI": 9 << uctypes.BF_POS | 1 << uctypes.BF_LEN | uctypes.BFUINT32,
 "WDGTB": 7 << uctypes.BF_POS | 2 << uctypes.BF_LEN | uctypes.BFUINT32,
 "W": 0 << uctypes.BF_POS | 7 << uctypes.BF_LEN | uctypes.BFUINT32,
 }),
}

WWDG = uctypes.struct(0x40002c00, WWDG_LAYOUT)

WWDG.WWDG_CFR.WDGTB = 0b10
WWDG.WWDG_CR.WDGA = 1
print("Current counter:", WWDG.WWDG_CR.T)

Defining structure layout

Structure layout is defined by a “descriptor” - a Python dictionary which
encodes field names as keys and other properties required to access them as
associated values:

{
 "field1": <properties>,
 "field2": <properties>,
 ...
}

Currently, uctypes requires explicit specification of offsets for each
field. Offset are given in bytes from the structure start.

Following are encoding examples for various field types:

	Scalar types:

"field_name": offset | uctypes.UINT32

in other words, the value is a scalar type identifier ORed with a field offset
(in bytes) from the start of the structure.

	Recursive structures:

"sub": (offset, {
 "b0": 0 | uctypes.UINT8,
 "b1": 1 | uctypes.UINT8,
})

i.e. value is a 2-tuple, first element of which is an offset, and second is
a structure descriptor dictionary (note: offsets in recursive descriptors
are relative to the structure it defines). Of course, recursive structures
can be specified not just by a literal dictionary, but by referring to a
structure descriptor dictionary (defined earlier) by name.

	Arrays of primitive types:

"arr": (offset | uctypes.ARRAY, size | uctypes.UINT8),

i.e. value is a 2-tuple, first element of which is ARRAY flag ORed
with offset, and second is scalar element type ORed number of elements
in the array.

	Arrays of aggregate types:

"arr2": (offset | uctypes.ARRAY, size, {"b": 0 | uctypes.UINT8}),

i.e. value is a 3-tuple, first element of which is ARRAY flag ORed
with offset, second is a number of elements in the array, and third is
a descriptor of element type.

	Pointer to a primitive type:

"ptr": (offset | uctypes.PTR, uctypes.UINT8),

i.e. value is a 2-tuple, first element of which is PTR flag ORed
with offset, and second is a scalar element type.

	Pointer to an aggregate type:

"ptr2": (offset | uctypes.PTR, {"b": 0 | uctypes.UINT8}),

i.e. value is a 2-tuple, first element of which is PTR flag ORed
with offset, second is a descriptor of type pointed to.

	Bitfields:

"bitf0": offset | uctypes.BFUINT16 | lsbit << uctypes.BF_POS | bitsize << uctypes.BF_LEN,

i.e. value is a type of scalar value containing given bitfield (typenames are
similar to scalar types, but prefixes with BF), ORed with offset for
scalar value containing the bitfield, and further ORed with values for
bit position and bit length of the bitfield within the scalar value, shifted by
BF_POS and BF_LEN bits, respectively. A bitfield position is counted
from the least significant bit of the scalar (having position of 0), and
is the number of right-most bit of a field (in other words, it’s a number
of bits a scalar needs to be shifted right to extract the bitfield).

In the example above, first a UINT16 value will be extracted at offset 0
(this detail may be important when accessing hardware registers, where
particular access size and alignment are required), and then bitfield
whose rightmost bit is lsbit bit of this UINT16, and length
is bitsize bits, will be extracted. For example, if lsbit is 0 and
bitsize is 8, then effectively it will access least-significant byte
of UINT16.

Note that bitfield operations are independent of target byte endianness,
in particular, example above will access least-significant byte of UINT16
in both little- and big-endian structures. But it depends on the least
significant bit being numbered 0. Some targets may use different
numbering in their native ABI, but uctypes always uses the normalized
numbering described above.

Module contents

	
class uctypes.struct(addr, descriptor, layout_type=NATIVE)

	Instantiate a “foreign data structure” object based on structure address in
memory, descriptor (encoded as a dictionary), and layout type (see below).

	
uctypes.LITTLE_ENDIAN

	Layout type for a little-endian packed structure. (Packed means that every
field occupies exactly as many bytes as defined in the descriptor, i.e.
the alignment is 1).

	
uctypes.BIG_ENDIAN

	Layout type for a big-endian packed structure.

	
uctypes.NATIVE

	Layout type for a native structure - with data endianness and alignment
conforming to the ABI of the system on which MicroPython runs.

	
uctypes.sizeof(struct, layout_type=NATIVE)

	Return size of data structure in bytes. The struct argument can be
either a structure class or a specific instantiated structure object
(or its aggregate field).

	
uctypes.addressof(obj)

	Return address of an object. Argument should be bytes, bytearray or
other object supporting buffer protocol (and address of this buffer
is what actually returned).

	
uctypes.bytes_at(addr, size)

	Capture memory at the given address and size as bytes object. As bytes
object is immutable, memory is actually duplicated and copied into
bytes object, so if memory contents change later, created object
retains original value.

	
uctypes.bytearray_at(addr, size)

	Capture memory at the given address and size as bytearray object.
Unlike bytes_at() function above, memory is captured by reference,
so it can be both written too, and you will access current value
at the given memory address.

	
uctypes.UINT8

	
uctypes.INT8

	
uctypes.UINT16

	
uctypes.INT16

	
uctypes.UINT32

	
uctypes.INT32

	
uctypes.UINT64

	
uctypes.INT64

	Integer types for structure descriptors. Constants for 8, 16, 32,
and 64 bit types are provided, both signed and unsigned.

	
uctypes.FLOAT32

	
uctypes.FLOAT64

	Floating-point types for structure descriptors.

	
uctypes.VOID

	VOID is an alias for UINT8, and is provided to conviniently define
C’s void pointers: (uctypes.PTR, uctypes.VOID).

	
uctypes.PTR

	
uctypes.ARRAY

	Type constants for pointers and arrays. Note that there is no explicit
constant for structures, it’s implicit: an aggregate type without PTR
or ARRAY flags is a structure.

	
uctypes.BFUINT8

	
uctypes.BFINT8

	
uctypes.BFUINT16

	
uctypes.BFINT16

	
uctypes.BFUINT32

	
uctypes.BFINT32

	
uctypes.BFUINT64

	
uctypes.BFINT64

	
uctypes.BF_POS

	
uctypes.BF_LEN

	Types for bitfield operation - see above.

Structure descriptors and instantiating structure objects

Given a structure descriptor dictionary and its layout type, you can
instantiate a specific structure instance at a given memory address
using uctypes.struct() constructor. Memory address usually comes from
following sources:

	Predefined address, when accessing hardware registers on a baremetal
system. Lookup these addresses in datasheet for a particular MCU/SoC.

	As a return value from a call to some FFI (Foreign Function Interface)
function.

	From uctypes.addressof(), when you want to pass arguments to an FFI
function, or alternatively, to access some data for I/O (for example,
data read from a file or network socket).

Structure objects

Structure objects allow accessing individual fields using standard dot
notation: my_struct.substruct1.field1. If a field is of scalar type,
getting it will produce a primitive value (Python integer or float)
corresponding to the value contained in a field. A scalar field can also
be assigned to.

If a field is an array, its individual elements can be accessed with
the standard subscript operator [] - both read and assigned to.

If a field is a pointer, it can be dereferenced using [0] syntax
(corresponding to C * operator, though [0] works in C too).
Subscripting a pointer with other integer values but 0 are also supported,
with the same semantics as in C.

Summing up, accessing structure fields generally follows the C syntax,
except for pointer dereference, when you need to use [0] operator
instead of *.

Limitations

1. Accessing non-scalar fields leads to allocation of intermediate objects
to represent them. This means that special care should be taken to
layout a structure which needs to be accessed when memory allocation
is disabled (e.g. from an interrupt). The recommendations are:

	Avoid accessing nested structures. For example, instead of
mcu_registers.peripheral_a.register1, define separate layout
descriptors for each peripheral, to be accessed as
peripheral_a.register1. Or just cache a particular peripheral:
peripheral_a = mcu_registers.peripheral_a. If a register
consists of multiple bitfields, you would need to cache references
to a particular register: reg_a = mcu_registers.peripheral_a.reg_a.

	Avoid other non-scalar data, like arrays. For example, instead of
peripheral_a.register[0] use peripheral_a.register0. Again,
an alternative is to cache intermediate values, e.g.
register0 = peripheral_a.register[0].

2. Range of offsets supported by the uctypes module is limited.
The exact range supported is considered an implementation detail,
and the general suggestion is to split structure definitions to
cover from a few kilobytes to a few dozen of kilobytes maximum.
In most cases, this is a natural situation anyway, e.g. it doesn’t make
sense to define all registers of an MCU (spread over 32-bit address
space) in one structure, but rather a peripheral block by peripheral
block. In some extreme cases, you may need to split a structure in
several parts artificially (e.g. if accessing native data structure
with multi-megabyte array in the middle, though that would be a very
synthetic case).

utimeq – heap queue with times

Difference to CPython

This is a MicroPython specific module. It’s based on heapq [https://docs.python.org/3.5/library/heapq.html#module-heapq] but
its implementation is more specialized than that, and it’s not possible to
use list operations like indexing on it.

This module uses the heap queue algorithm (priority queue algorithm) to create
a heap queue where entries are popped based on which has the earliest time.

Classes

	
class utimeq.utimeq(n)

	Create a utimeq heap queue with space for n entries. This size is static,
and an attempt to push too many entries onto it will throw an IndexError with
message ‘queue overflow’.

The queue sorts itself by entries’ time parameters, and then by the order
in which entries were pushed for entries with equal times. So entries with
lower time parameters get popped first, and for entries with the same time
the first only that was pushed gets popped first.

The heap queue can be tested for non-emptiness with “if(heap)”.

	
push(time, obj, userdata)

	Push an entry onto the heap queue.

	The time parameter should be a number of ticks (see the utime module)
compatible with utime.ticks_diff().

	The obj and userdata parameters are not used internally, so the user
can set them to anything. (The underlying MicroPython code suggests a
callback and its arguments.)

	
pop(list)

	Takes the entry with lowest time off the heap queue. Populates the
first three items of the given list (which must already exist) with:

	The entry’s time.

	The entry’s obj.

	The entry’s userdata.

Returns None.

	
peektime()

	Returns the time of the current top item (i.e. the one that will be
popped next) but without popping it.

_onewire – OneWire Protocol

This module allows sending and receiving of data on a Pin according to the
OneWire protocol [https://en.wikipedia.org/wiki/1-Wire].

Functions which take a pin argument expect an argument that can be used
to reference a Pin, i.e. something you can feed to the machine.Pin()
function. In the RI5’s case, this is a str.

Functions

	
_onewire.reset(pin)

	Does a OneWire reset on the given pin. Returns true if a device presence
pulse was detected, otherwise false.

	
_onewire.readbit(pin)

	Reads and returns a single bit from the given pin, assuming the Onewire
protocol.

	
_onewire.readbyte(pin)

	Reads 8 bits from the given pin using the Onewire protocol, then returns
them as an integer. (Assumes a low-bit-first model.)

	
_onewire.writebit(pin, bitval)

	Writes a single bit with value bitval to the given pin, assuming the
Onewire protocol.

	
_onewire.writebyte(pin, byteval)

	From byte byteval, writes 8 bits to the given pin using the Onewire
protocol. (Assumes a low-bit-first model.)

	
_onewire.crc8(bytearray)

	Computes the 8-bit CRC-remainder of the given bytearray (or other buffered
object). As expected for the Onewire protocol, it seems to use the
CRC-8/MAXIM version.

hub – hub brick functionality

Classes and functions related to simple parts and abilities of the Hub brick
itself, like buttons, ports, and internal sensors.

These are lower-level functions than the API ones (the API seems to import this
module a lot) and as such they provide greater control, although with a
corresponding amount of risk of things going wrong if you use them improperly.

Constants

	
hub.__version__ = v1.0.06.0034-b0c335b

	

Functions

	
hub.info(???)

	???

	
hub.power_off(???)

	???

	
hub.repl_restart(???)

	???

	
hub.status(???)

	???

	
hub.led(???)

	???

	
hub.temperature(???)

	???

	
hub.file_transfer(???)

	???

Imports

	Class util.constants.Image

Objects and Classes

It’s not quite clear from MicroPython help text whether these are classes or
instances of classes. For the moment I’m assuming both, since some have
different names from the object they point to. But if that’s the case it’s not
clear where the class lives!

	
hub.port

	

	
class hub.Port(???)

	???

Constants

	
DETACHED = 0

	???

	
ATTACHED = 1

	???

	
A = Port(A)

	

	
B = Port(B)

	

	
C = Port(C)

	

	
D = Port(D)

	

	
E = Port(E)

	

	
F = Port(F)

	???

	
MODE_DEFAULT = 0

	???

	
MODE_FULL_DUPLEX = 1

	???

	
MODE_HALF_DUPLEX = 2

	???

	
MODE_GPIO = 3

	???

Port(X)

These are objects in their own right, with the following contents:

Methods
.. method:: callback(???)

???

	
info(???)

	???

	
mode(???)

	???

	
pwm(???)

	???

Variables
.. data:: device

??? Observed value: None

	
motor

	??? Observed value: None

	
hub.display

	

	
class hub.Display(???)

	???

	
pixel(???)

	???

	
show(???)

	???

	
callback(???)

	???

	
clear(???)

	???

	
rotation(???)

	???

	
hub.button

	

	
class hub.Button(???)

	???

Members

	
center = center

	

	
left = left

	

	
right = right

	

	
connect = connect

	Represent each of the four buttons on the Hub (the main button in the
center, left, right, and the bluetooth connect button). The values are
objects with the following contents:

	
is_pressed(???)

	???

	
was_pressed(???)

	???

	
presses(???)

	???

	
callback(???)

	???

	
on_change(???)

	???

	
hub.sound

	

	
class hub.Sound(???)

	???

Methods

	
volume(???)

	???

	
beep(???)

	???

	
play(???)

	???

	
callback(???)

	???

Constants

	
SOUND_SIN = 0

	???

	
SOUND_SQUARE = 1

	???

	
SOUND_TRIANGLE = 2

	???

	
SOUND_SAWTOOTH = 3

	???

	
hub.motion

	

	
class hub.Motion(???)

	???

Methods

	
gyroscope(???)

	???

	
gyroscope_filter(???)

	???

	
accelerometer(???)

	???

	
accelerometer_filter(???)

	???

	
position(???)

	???

	
reset_yaw(???)

	???

	
preset_yaw(???)

	???

	
orientation(???)

	???

	
gesture(???)

	???

	
was_gesture(???)

	???

	
callback(???)

	???

Constants

	
NONE = NULL

	???

	
LEFTSIDE = leftside

	???

	
RIGHTSIDE = rightside

	???

	
DOWN = down

	???

	
UP = up

	???

	
FRONT = front

	???

	
BACK = back

	???

	
TAPPED = tapped

	???

	
DOUBLETAPPED = doubletapped

	???

	
SHAKE = shake

	???

	
FREEFALL = freefall

	???

	
hub.battery

	

	
class hub.Battery(???)

	???

Methods

	
voltage(???)

	???

	
current(???)

	???

	
temperature(???)

	???

	
charger_detect(???)

	???

	
info(???)

	???

	
capacity_left(???)

	???

Constants

	
BATTERY_NO_ERROR = 0

	???

	
BATTERY_HUB_TEMPERATURE_CRITICAL_OUT_OF_RANGE = -2

	???

	
BATTERY_TEMPERATURE_OUT_OF_RANGE = -2

	???

	
BATTERY_TEMPERATURE_SENSOR_FAIL = -3

	???

	
BATTERY_BAD_BATTERY = -4

	???

	
BATTERY_VOLTAGE_TOO_LOW = -5

	???

	
USB_CH_PORT_NONE = 0

	???

	
USB_CH_PORT_SDP = 1

	???

	
USB_CH_PORT_CDP = 2

	???

	
USB_CH_PORT_DCP = 3

	???

	
CHARGER_STATE_FAIL = -1

	???

	
CHARGER_STATE_DISCHARGING = 0

	???

	
CHARGER_STATE_CHARGING_ONGOING = 1

	???

	
CHARGER_STATE_CHARGING_COMPLETED = 2

	???

	
hub.bluetooth

	

	
class hub.bt(???)

	???

	
info(???)

	???

	
discoverable(???)

	???

	
hub.ble

	

	
class hub.bluetooth(???)

	???

	
rssi(???)

	???

	
mac(???)

	???

	
scan(???)

	???

	
scan_result(???)

	???

	
connect(???)

	???

	
callback(???)

	???

	
hub.supervision

	

	
class hub.supervision(???)

	???

	
info(???)

	???

	
hub.BT_VCP

	

	
class hub.BT_VCP(???)

	???

	
setinterrupt(???)

	???

	
isconnected(???)

	???

	
any(???)

	???

	
send(???)

	???

	
recv(???)

	???

	
read(???)

	???

	
readinto(???)

	???

	
readline(???)

	???

	
readlines(???)

	???

	
write(???)

	???

	
close(???)

	???

	
__del__(???)

	???

	
__enter__(???)

	???

	
__exit__(???)

	???

	
callback(???)

	???

	
hub.USB_VCP

	

	
class hub.USB_VCP(???)

	??? Has all the same contents as BT_VCP, with these extras:

Methods

	
init(???)

	???

Constants

	
RTS = 1

	???

	
CTS = 2

	???

firmware – Firmware information and loading

Warning

By definition, a lot of the functions in here are probably quite dangerous to
run as they can rewrite firmware. I haven’t experimented with all of them
so I can’t even tell you which will cause system crashes, and which will be worse…
Presumably this is the sort of thing you’ll be wanting to run only if you want
to load on a custom firmware. If you’re doing that, feel free to add details
on the functions and the exact dangers of using them!

See https://github.com/gpdaniels/spike-prime/issues/7 for some more (but
currently still quite limited) details.

Functions

	
firmware.info()

	Returns a dictionary containing various details about the firmware. For
the version in this branch with no changes, it returns:

{‘appl_checksum’: 1231192444, ‘new_appl_image_stored_checksum’: 0,
‘appl_calc_checksum’: 1231192444, ‘new_appl_valid’: False,
‘new_appl_image_calc_checksum’: 0, ‘new_image_size’: 0,
‘currently_stored_bytes’: 0, ‘upload_finished’: True,
‘spi_flash_size’: ‘32 MBytes’, ‘valid’: 0}

	
firmware.appl_checksum()

	Returns a checksum of the firmware. For the version in this branch with no
changes, that’s 1231192444.

	
firmware.appl_image_initialise(???params???)

	(Unknown - I wasn’t confident I could run it safely. I suspect this might
potentially be quite dangerous, at least if you’ve stored something in
the image store at any point beforehand. Seems to take up to 1 positional
argument.)

	
firmware.appl_image_store(???params???)

	(Unknown - I wasn’t confident I could run it safely. Seems to take up to 1
positional argument.)

	
firmware.appl_image_read(start_pos?)

	Returns a bytearray - seems to return empty ones by default for all integer
inputs. My hypothesis is that you’re supposed to store an image in here with
the appl_image_store() function and then appl_image_initialise() it to start
running with it, but is this the whole firmware or just some particular
necessary part of it that’s different to what you might write with flash_write()?

I’m also hypothesising based on flash_read that the parameter is probably
the byte to start reading at, and it returns empty bytearrays when there’s
no bytes stored to read.

	
firmware.flash_read(start_pos)

	Returns a bytearray of 32 bytes of the flash memory, starting at the given
byte.

	
firmware.flash_write(???)

	(Unknown - I wasn’t confident I could run it safely. Some internet
research suggests this is the particularly dangerous one, so maybe don’t
try this at home unless you’ve got the cash for another hub! Seems to take
2 positional arguments - perhaps position to write and data to write in
some order?)

	
firmware.ext_flash_read_length()

	Seems to crash the hub or at least make it unresponsive until after a battery
pull or two. Not sure what it was trying to do!

	
firmware.ext_flash_erase()

	(Unknown - I wasn’t confident I could run it safely. Probably another
quite dangerous one?)

	
firmware.erase_superblock()

	(Unknown - I wasn’t confident I could run it safely. The link at the top says
that this erases the filesystem from the hub.)

	
firmware.bootloader_version()

	Returns a string specifying bootloader version. For the version in this
branch with no changes, that’s ‘v0.5.01.0002-f75d82d’.

_api – user API

This module contains most of the API functions that you’re meant to call to
operate the system as a user. The module itself is actually a backend to
modules mindstorms – Mindstorms branding of the user API and spike – Spike Prime branding of the user API, which are nearly identical and seem to exist
mainly in order to correctly brand the Hub in documentation (i.e. so that
Mindstorms docs can tell you to import mindstorms, and Spike Prime docs can
tell you to import spike).

One interesting note is that submodule large_technic_hub only seems to
appear in this module after you’ve imported either mindstorms – Mindstorms branding of the user API or spike – Spike Prime branding of the user API, so
it’s probably better to just use one of those unless you have very odd
requirements.

All of the classes within the submodules (except LargeTechnicHub) are aliased
in the main namespace for convenience.

Submodules

	_api.distancesensor – distance sensor functions API

	_api.forcesensor – force sensor functions API

	_api.colorsensor – color sensor functions API

	_api.motionsensor – motion sensor functions API

	_api.statuslight – status light functions API

	_api.motor – motor functions API

	_api.button – button functions API

	_api.motorpair – paired motor functions API

	_api.lightmatrix – 5x5 display functions API

	_api.util – utility functions for the API code

	_api.speaker – speaker functions API

	_api.app – application functions API

	_api.large_technic_hub – central hub API

_api.distancesensor – distance sensor functions API

This module contains the API functions for user interaction with a distance
sensor brick.

This module is imported by the mindstorms – Mindstorms branding of the user API and spike – Spike Prime branding of the user API modules so that the API
can be branded appropriately in documentation (i.e. so that Mindstorms docs can
tell you to import mindstorms, and Spike Prime docs can tell you to import
spike).

DistanceSensor Class

	
class _api.distancesensor.DistanceSensor(???)

	???

Methods

	
_set_mode(???)

	???

	
_set_range_mode(???)

	???

	
_is_distance_sensor(???)

	???

	
get_distance_cm(???)

	???

	
get_distance_inches(???)

	???

	
get_distance_percentage(???)

	???

	
wait_for_distance_farther_than(???)

	???

	
wait_for_distance_closer_than(???)

	???

	
light_up(???)

	???

	
light_up_all(???)

	???

Constants

	
PERCENT = %

	???

	
CM = cm

	???

	
IN = in

	???

	
_LONG_RANGE_MODE = (0, [(0, 0)])

	???

	
_SHORT_RANGE_MODE = (1, [(1, 0)])

	???

	
_LIGHT_MODE = (5, [(5, 0), (5, 1), (5, 2), (5, 3)])

	???

Imports

	Function _api.util.newSensorDisconnectedError

	Function utime.sleep_ms

	Function util.scratch.clamp

	Function util.sensors.is_type

	Constant util.constants.LPF2_FLIPPER_DISTANCE = 62

	Constant util.constants.PORTS = {‘C’: Port(C), ‘B’: Port(B), ‘D’: Port(D), ‘E’: Port(E), ‘A’: Port(A), ‘F’: Port(F)}

_api.forcesensor – force sensor functions API

This module contains the API functions for user interaction with a force
sensor brick. (Included with Spike Prime but not in the Robot Inventor kit.)

This module is imported by the mindstorms – Mindstorms branding of the user API and spike – Spike Prime branding of the user API modules so that the API
can be branded appropriately in documentation (i.e. so that Mindstorms docs can
tell you to import mindstorms, and Spike Prime docs can tell you to import
spike).

Functions

	
_api.forcesensor._get_port_device(???)

	???

	
_api.forcesensor._is_force_sensor(???)

	???

ForceSensor Class

	
class _api.forcesensor.ForceSensor(???)

	???

Methods

	
wait_until_released(???)

	???

	
is_pressed(???)

	???

	
wait_until_pressed(???)

	???

	
_is_pressed(???)

	???

	
get_force_percentage(???)

	???

	
get_force_newton(???)

	???

Imports

	Function _api.util.newSensorDisconnectedError

	Function utime.sleep_ms

	Function util.sensors.is_type

	Constant util.constants.LPF2_FLIPPER_FORCE = 63

	Constant util.constants.PORTS = {‘C’: Port(C), ‘B’: Port(B), ‘D’: Port(D), ‘E’: Port(E), ‘A’: Port(A), ‘F’: Port(F)}

_api.colorsensor – color sensor functions API

This module contains the API functions for user interaction with a color
sensor brick.

This module is imported by the mindstorms – Mindstorms branding of the user API and spike – Spike Prime branding of the user API modules so that the API
can be branded appropriately in documentation (i.e. so that Mindstorms docs can
tell you to import mindstorms, and Spike Prime docs can tell you to import
spike).

Functions

	
_api.colorsensor._get_port_device(???)

	???

	
_api.colorsensor._is_color_sensor(???)

	???

Constants

	
_api.colorsensor._COLORLIST = ['black', 'violet', None, 'blue', 'cyan', 'green', None, 'yellow', None, 'red', 'white']

	A list to allow easy mapping from color values to color names.

	
_api.colorsensor._AMBIENT_MODE = (2, [(2, 0)])

	???

	
_api.colorsensor._LIGHT_MODE = (3, [(3, 0), (3, 1), (3, 2)])

	???

	
_api.colorsensor._COMBI_MODE = ([(1, 0), (0, 0), (5, 0), (5, 1), (5, 2), (5, 3)],)

	???

ColorSensor Class

	
class _api.colorsensor.ColorSensor(???)

	???

Methods

	
light_up_all(???)

	???

	
light_up(???)

	???

	
get_reflected_light(???)

	???

	
get_rgb_intensity(???)

	???

	
get_red(???)

	???

	
get_green(???)

	???

	
get_blue(???)

	???

	
get_ambient_light(???)

	???

	
get_color(???)

	???

	
_get_color(???)

	???

	
_set_mode(???)

	???

	
wait_until_color(???)

	???

	
wait_for_new_color(???)

	???

Imports

	Function _api.util.newSensorDisconnectedError

	Function utime.sleep_ms

	Function util.scratch.clamp

	Function util.sensors.get_sensor_value

	Function util.sensors.is_type

	Constant util.constants.LPF2_FLIPPER_COLOR = 61

	Constant util.constants.PORTS = {‘C’: Port(C), ‘B’: Port(B), ‘D’: Port(D), ‘E’: Port(E), ‘A’: Port(A), ‘F’: Port(F)}

_api.motionsensor – motion sensor functions API

This module contains the API functions for user interaction with the motion
sensor inside the Hub.

This module is imported by the mindstorms – Mindstorms branding of the user API and spike – Spike Prime branding of the user API modules so that the API
can be branded appropriately in documentation (i.e. so that Mindstorms docs can
tell you to import mindstorms, and Spike Prime docs can tell you to import
spike).

MotionSensor Class

	
class _api.motionsensor.MotionSensor(???)

	???

Methods

	
get_pitch_angle(???)

	???

	
get_roll_angle(???)

	???

	
get_yaw_angle(???)

	???

	
get_orientation(???)

	???

	
get_gesture(???)

	???

	
reset_yaw_angle(???)

	???

	
was_gesture(???)

	???

	
wait_for_new_orientation(???)

	???

	
wait_for_new_gesture(???)

	???

Constants

	
FALLING = falling

	???

	
SHAKEN = shaken

	???

	
TAPPED = tapped

	???

	
DOUBLE_TAPPED = doubletapped

	???

	
LEFT_SIDE = leftside

	???

	
RIGHT_SIDE = rightside

	???

	
FRONT = front

	???

	
BACK = back

	???

	
UP = up

	???

	
DOWN = down

	???

Imports

	Module hub – hub brick functionality

	Function utime.sleep_ms

_api.statuslight – status light functions API

This module contains the API functions for user interaction with the status
light around the main button on the Hub.

This module is imported by the mindstorms – Mindstorms branding of the user API and spike – Spike Prime branding of the user API modules so that the API
can be branded appropriately in documentation (i.e. so that Mindstorms docs can
tell you to import mindstorms, and Spike Prime docs can tell you to import
spike).

Constants

	
_api.statuslight._COLORMAP = {'white': 10, 'pink': 1, 'blue': 3, 'yellow': 7, 'orange': 8, 'violet': 2, 'azure': 4, 'red': 9, 'green': 6, 'cyan': 5, 'black': 0}

	Dictionary to map from names of colors to their values.

StatusLight Class

	
class _api.statuslight.StatusLight(???)

	???

Methods

	
on(???)

	???

	
off(???)

	???

Imports

	Module hub – hub brick functionality

_api.motor – motor functions API

This module contains the API functions for user interaction with a motor brick.

This module is imported by the mindstorms – Mindstorms branding of the user API and spike – Spike Prime branding of the user API modules so that the API
can be branded appropriately in documentation (i.e. so that Mindstorms docs can
tell you to import mindstorms, and Spike Prime docs can tell you to import
spike).

Functions

	
_api.motor._is_motor(???)

	???

Motor Class

	
class _api.motor.Motor(???)

	???

Methods

	
set_degrees_counted(???)

	???

	
set_default_speed(???)

	???

	
set_stop_action(???)

	???

	
set_stall_detection(???)

	???

	
get_position(???)

	???

	
get_speed(???)

	???

	
get_degrees_counted(???)

	???

	
get_default_speed(???)

	???

	
run_to_degrees_counted(???)

	???

	
run_to_position(???)

	???

	
run_for_degrees(???)

	???

	
run_for_rotations(???)

	???

	
run_for_seconds(???)

	???

	
was_stalled(???)

	???

	
was_interrupted(???)

	???

	
start_at_power(???)

	???

	
start(???)

	???

	
stop(???)

	???

Constants

	
BRAKE = brake

	???

	
HOLD = hold

	???

	
COAST = coast

	???

Imports

	Module hub – hub brick functionality

	Function _api.util.newSensorDisconnectedError

	Function _api.util.wait_for_async

	Function utime.sleep_ms

	Function util.motor.clamp_power

	Function util.motor.clamp_speed

	Function util.sensors.is_type

	Constant system.system = <Main System object>

	Constant `util.constants.MOTOR_TYPES = (65, 48, 49, 75, 76)

	Constant util.constants.PORTS = {‘C’: Port(C), ‘B’: Port(B), ‘D’: Port(D), ‘E’: Port(E), ‘A’: Port(A), ‘F’: Port(F)}

_api.button – button functions API

This module contains the API functions for user interaction with buttons. In
particular the left and right buttons on the hub.

This module is imported by the mindstorms – Mindstorms branding of the user API and spike – Spike Prime branding of the user API modules so that the API
can be branded appropriately in documentation (i.e. so that Mindstorms docs can
tell you to import mindstorms, and Spike Prime docs can tell you to import
spike).

Button Class

	
class _api.button.Button(???)

	???

Methods

	
was_pressed(???)

	???

	
wait_until_pressed(???)

	???

	
wait_until_released(???)

	???

	
is_pressed(???)

	???

_api.motorpair – paired motor functions API

This module contains the API functions for user interaction with pairs of
motors. (Motors linked together in code to make dual-wheel vehicles easy to
operate.)

This module is imported by the mindstorms – Mindstorms branding of the user API and spike – Spike Prime branding of the user API modules so that the API
can be branded appropriately in documentation (i.e. so that Mindstorms docs can
tell you to import mindstorms, and Spike Prime docs can tell you to import
spike).

Functions

	
_api.motorpair.clamp_steering(???)

	???

	
_api.motorpair._is_motor(???)

	???

Constants

	
_api.motorpair._DISCONNECTED_ERROR = One or both of the motors has been disconnected.

	???

	
_api.motorpair._MOTOR_PAIRING_ERROR = The motors could not be paired.

	???

MotorPair Class

	
class _api.motorpair.MotorPair(???)

	???

Methods

	
get_default_speed(???)

	???

	
set_default_speed(???)

	???

	
set_stop_action(???)

	???

	
set_motor_rotation(???)

	???

	
start(???)

	???

	
start_at_power(???)

	???

	
start_tank(???)

	???

	
start_tank_at_power(???)

	???

	
stop(???)

	???

	
move(???)

	???

	
move_tank(???)

	???

	
_move_with_speed(???)

	???

	
was_interrupted(???)

	???

Constants

	
BRAKE = brake

	???

	
HOLD = hold

	???

	
COAST = coast

	???

	
CM = cm

	???

	
IN = in

	???

	
DEGREES = degrees

	???

	
SECONDS = seconds

	???

	
ROTATIONS = rotations

	???

Imports

	Function _api.util.wait_for_async

	Function system.movewrapper.from_steering

	Function util.motor.clamp_power

	Function util.motor.clamp_speed

	Constant system.system = <Main System object>

	Constant util.constants.PORTS = {‘C’: Port(C), ‘B’: Port(B), ‘D’: Port(D), ‘E’: Port(E), ‘A’: Port(A), ‘F’: Port(F)}

_api.lightmatrix – 5x5 display functions API

This module contains the API functions for user interaction with the 5x5
display on the front of the Hub.

This module is imported by the mindstorms – Mindstorms branding of the user API and spike – Spike Prime branding of the user API modules so that the API
can be branded appropriately in documentation (i.e. so that Mindstorms docs can
tell you to import mindstorms, and Spike Prime docs can tell you to import
spike).

LightMatrix Class

	
class _api.lightmatrix.LightMatrix(???)

	???

Methods

	
show_image(???)

	???

	
off(???)

	???

	
set_pixel(???)

	???

	
write(???)

	???

Imports

	Module hub – hub brick functionality

_api.util – utility functions for the API code

This module contains functions used by the API functions. (I don’t believe
they’re designed to be a part of the API as they’re not obviously documented
anywhere.)

This module is imported by the mindstorms – Mindstorms branding of the user API and spike – Spike Prime branding of the user API modules so that the API
can be branded appropriately in documentation (i.e. so that Mindstorms docs can
tell you to import mindstorms, and Spike Prime docs can tell you to import
spike).

Functions

	
_api.util.wait_for_async(???)

	???

	
_api.util.newSensorDisconnectedError(???)

	???

Imports

	Module utime – time related functions

_api.speaker – speaker functions API

This module contains the API functions for user interaction with the speaker
inside the Hub.

This module is imported by the mindstorms – Mindstorms branding of the user API and spike – Spike Prime branding of the user API modules so that the API
can be branded appropriately in documentation (i.e. so that Mindstorms docs can
tell you to import mindstorms, and Spike Prime docs can tell you to import
spike).

Speaker Class

	
class _api.speaker.Speaker(???)

	???

Methods

	
beep(???)

	???

	
start_beep(???)

	???

	
stop(???)

	???

	
get_volume(???)

	???

	
set_volume(???)

	???

Imports

	Module hub – hub brick functionality

	Function _api.util.wait_for_async

	Constant system.system = <Main System object>

_api.app – application functions API

This module contains the API functions for user interaction with the
controlling application (i.e. computer or phone).

This module is imported by the mindstorms – Mindstorms branding of the user API and spike – Spike Prime branding of the user API modules so that the API
can be branded appropriately in documentation (i.e. so that Mindstorms docs can
tell you to import mindstorms, and Spike Prime docs can tell you to import
spike).

Constants

	
_api.app._NOT_CONNECTED_ERROR = The programming app is not connected to the hub.

	Error text for when the app and the hub have become disconnected.

App Class

	
class _api.app.App(???)

	???

Methods

	
play_sound(???)

	???

	
_play_sound(???)

	???

	
start_sound(???)

	???

Imports

	Class protocol.ujsonrpc.JSONRPC

	Function utime.ticks_diff

	Function utime.ticks_ms

	Constant util.constants.BT_VCP = BT_VCP(0)

	Constant util.constants.USB_VCP = USB_VCP(0)

_api.large_technic_hub – central hub API

This module contains the specific instances of other API classes for user
interaction with various aspects of the central hub brick.

The class in this module is superclassed by the mindstorms.MSHub and
spike.PrimeHub classes so that the API can be branded appropriately in
documentation (i.e. so that Mindstorms docs can tell you to import mindstorms,
and Spike Prime docs can tell you to import spike).

LargeTechnicHub Class

	
class _api.large_technic_hub.LargeTechnicHub(???)

	???

Properties

	
property status_light

	???

	
property light_matrix

	???

	
property left_button

	???

	
property right_button

	???

	
property motion_sensor

	???

	
property speaker

	???

Constants

	
PORT_A = A

	

	
PORT_B = B

	

	
PORT_C = C

	

	
PORT_D = D

	

	
PORT_E = E

	

	
PORT_F = F

	Constants to specify specific ports on the Hub.

	
_status_light

	A reference to the specific _api.statuslight.StatusLight object
representing the status light under the main button on the Hub.

	
_light_matrix

	A reference to the specific _api.lightmatrix.LightMatrix object
representing the 5x5 display on the Hub.

	
_left_button

	A reference to the specific _api.button.Button object representing the
left button on the Hub.

	
_right_button

	A reference to the specific _api.button.Button object representing the
right button on the Hub.

	
_motion_sensor

	A reference to the specific _api.motionsensor.MotionSensor object
representing the motion sensor in the Hub.

	
_speaker

	A reference to the specific _api.speaker.Speaker object representing
the speaker in the Hub.

Imports

	Module hub – hub brick functionality

	Function _api.button.Button

	Function _api.lightmatrix.LightMatrix

	Function _api.motionsensor.MotionSensor

	Function _api.speaker.Speaker

	Function _api.statuslight.StatusLight

commands – commands module

Module containing a lot of high-level concepts, but no obvious theme beyond
that. Mostly organised into submodules *_methods containing *Methods classes,
which are all also aliased in the main module for convenience and seem to
implement the commands.abstract_handler.AbstractHandler class.

Submodules

	commands.abstract_handler – base class for handler classes

	commands.linegraphmonitor_methods – ???

	commands.sound_methods – ???

	commands.light_methods – ???

	commands.program_methods – ???

	commands.motor_methods – ???

	commands.hub_methods – ???

	commands.wait_methods – ???

	commands.move_methods – ???

commands.abstract_handler – base class for handler classes

Contains an abstract base class implemented by the various *Methods classes in
the commands – commands module module.

AbstractHandler Class

	
class commands.abstract_handler.AbstractHandler(???)

	???

Methods

	
abstract get_methods(???)

	Implemented by all the classes that implement this class. ???

Constants

	
_rpc = None

	???

commands.linegraphmonitor_methods – ???

???

LinegraphMonitorMethods Class

	
class commands.linegraphmonitor_methods.LinegraphMonitorMethods(???)

	???

Methods

	
__init__(???)

	Closure function. ???

	
get_methods(???)

	???

	
handle_delete_file(???)

	???

	
handle_get_linegraph_monitor_info(???)

	???

	
_error_if_running(???)

	???

	
handle_get_linegraph_monitor_package(???)

	???

Imports

	Module commands.abstract_handler.AbstractHandler

	Module math – mathematical functions

	Module uos – basic “operating system” services

	Function micropython.const

	Function utime.sleep_ms

	Function utime.ticks_diff

	Function utime.ticks_ms

	Constant util.constants.LINEGRAPH_DIR = /data/linegraph

	Constant util.storage.ENOENT = 2

commands.sound_methods – ???

???

SoundMethods Class

	
class commands.sound_methods.SoundMethods(???)

	???

Methods

	
__init__(???)

	Closure function. ???

	
get_methods(???)

	???

	
handle_sound_beep_for_time(???)

	???

	
handle_play_sound(???)

	???

	
handle_sound_off(???)

	???

	
handle_sound_beep(???)

	???

Imports

	Module commands.abstract_handler.AbstractHandler

	Module hub – hub brick functionality

commands.light_methods – ???

???

LightMethods Class

	
class commands.light_methods.LightMethods(???)

	???

Methods

	
__init__(???)

	Closure function. ???

	
get_methods(???)

	???

	
handle_display_rotate_direction(???)

	???

	
handle_display_rotate_orientation(???)

	???

	
handle_ultrasonic_light_up(???)

	???

	
handle_display_clear(???)

	???

	
handle_display_animation(???)

	???

	
handle_center_button_lights(???)

	???

	
handle_display_set_pixel(???)

	???

	
handle_display_sync(???)

	???

	
handle_display_image_for(???)

	???

	
show_frames(???)

	???

	
handle_display_image(???)

	???

	
handle_display_text(???)

	???

	
static _merge_display_params(???)

	???

Constants

	
DEFAULT_DISPLAY_PARAMS = {'fade': 0, 'delay': 500, 'wait': False, 'loop': False, 'clear': False}

	

Imports

	Module commands.abstract_handler.AbstractHandler

	Module hub – hub brick functionality

	Function util.rotation.rotate_hub_display

	Function util.rotation.rotate_hub_display_to_value

	Function util.scratch.number_color_to_rgb

	Function util.scratch.percent_to_int

	Function util.sensors.set_display_sync

	Constant util.constants.NO_STATUS = -1

	Constant util.constants.PORTS = {‘C’: Port(C), ‘B’: Port(B), ‘D’: Port(D), ‘E’: Port(E), ‘A’: Port(A), ‘F’: Port(F)}

commands.program_methods – ???

???

Constants

	
commands.program_methods._PRINT_OVERRIDE = "from util.print_override import spikeprint;print = spikeprint\n"

	Code to override the regular print statement with the special RI5 one.

	
commands.program_methods._TRANSFER_HANDLE = {}

	???

ProgramMethods Class

	
class commands.program_methods.ProgramMethods(???)

	???

Methods

	
__init__(???)

	Closure function. ???

	
get_methods(???)

	???

	
handle_write_package(???)

	???

	
handle_program_reset_time(???)

	???

	
handle_program_start_time(???)

	???

	
handle_soft_reset(???)

	???

	
_handle_write_print_override(???)

	???

	
handle_program_execute(???)

	???

	
handle_start_write_program(???)

	???

	
handle_remove_project(???)

	???

	
handle_program_terminate(???)

	???

	
handle_program_modechange(???)

	???

	
handle_program_get_time(???)

	???

	
handle_storage_status(???)

	???

	
handle_move_project(???)

	???

Imports

	Module commands.abstract_handler.AbstractHandler

	Module protocol.notifications – ???

	Module sys – system specific functions

	Module urandom – random number generation

	Module util.storage – storage utility module

	Module utime – time related functions

	Function micropython.const

	Function ubinascii.a2b_base64

	Function util.time.get_time

	Function util.time.reset_time

	Function util.time.start_time

commands.motor_methods – ???

???

MotorMethods Class

	
class commands.motor_methods.MotorMethods(???)

	???

Methods

	
__init__(???)

	Closure function. ???

	
get_methods(???)

	???

	
handle_motor_pwm(???)

	???

	
handle_motor_go_direction_to_position(???)

	???

	
handle_motor_run_timed(???)

	???

	
handle_motor_stop(???)

	???

	
handle_motor_start(???)

	???

	
handle_motor_run_for_degrees(???)

	???

	
handle_motor_set_position(???)

	???

	
handle_motor_go_to_relative_position(???)

	???

	
handle_motor_adjust_offset(???)

	???

	
handle_motor_position(???)

	???

Imports

	Module commands.abstract_handler.AbstractHandler

	Module hub – hub brick functionality

	Function event_loop.get_event_loop

	Constant util.constants.NO_STATUS = -1

	Constant util.constants.PORTS = {‘C’: Port(C), ‘B’: Port(B), ‘D’: Port(D), ‘E’: Port(E), ‘A’: Port(A), ‘F’: Port(F)}

commands.hub_methods – ???

???

HubMethods Class

	
class commands.hub_methods.HubMethods(???)

	???

Methods

	
__init__(???)

	Closure function. ???

	
get_methods(???)

	???

	
handle_trigger_current_state(???)

	???

	
handle_set_port_mode(???)

	???

	
handle_set_hub_name(???)

	???

	
handle_get_hub_info(???)

	???

	
handle_reset_yaw(???)

	???

Imports

	Module commands.abstract_handler.AbstractHandler

	Module hub – hub brick functionality

	Module protocol.notifications – ???

	Module version – version module

	Function ubinascii.a2b_base64

	Function util.storage.write_local_name

	Constant util.storage.ENOENT = 2

commands.wait_methods – ???

???

WaitMethods Class

	
class commands.wait_methods.WaitMethods(???)

	???

Methods

	
__init__(???)

	Closure function. ???

	
get_methods(???)

	???

	
handle_when_sensor_changed(???)

	???

	
handle_when_sensor_force_bumped(???)

	???

	
handle_when_sensor_force_released(???)

	???

	
handle_wait_gesture(???)

	???

Imports

	Module commands.abstract_handler.AbstractHandler

commands.move_methods – ???

???

MoveMethods Class

	
class commands.move_methods.MoveMethods(???)

	???

Methods

	
__init__(???)

	Closure function. ???

	
get_methods(???)

	???

	
handle_move_tank_degrees(???)

	???

	
handle_move_tank_time(???)

	???

	
handle_move_start_powers(???)

	???

	
handle_move_stop(???)

	???

	
handle_move_start_speeds(???)

	???

Imports

	Module commands.abstract_handler.AbstractHandler

	Constant util.constants.NO_STATUS = -1

event_loop – event_loop module

Home of the Event loop class - this seems to be the main scheduler on the Hub,
called by the hub_runtime – Hub main module module’s start() procedure. The EventLoop class
(along with the imports) seem to technically live inside an event_loop.event_loop
submodule, but the class is also available inside event_loop itself, so the
submodule isn’t necessary to know about.

Functions

	
event_loop.get_event_loop(???)

	???

Constants

	
event_loop._EVENT_LOOP

	Reference to the main event loop object (type EventLoop).

Class EventLoop

	
class event_loop.EventLoop(???)

	???

	
_discard(???)

	???

	
step(???)

	Generator function. ???

	
cancel(???)

	???

	
call_soon(???)

	???

	
run_forever(???)

	???

Imports

	Module ucollections – collection and container types

	Module utimeq – heap queue with times

	Module utime – time related functions

mindstorms – Mindstorms branding of the user API

This module seems to be purely designed as a frontend for the _api – user API module,
so that Robot Inventor Mindstorms documentation can tell its users to import a
module with a related name.

See _api – user API for the majority of submodules and classes, all of which can also
be called from the mindstorms module by using it as a synonym for “_api”.

Classes

	
class mindstorms.MSHub

	The actual class appears to have no methods or functions of its own, but it
seems to be a superclass of _api.large_technic_hub.LargeTechnicHub so
inherits everything from there.

The API expects most access to the central Technic Hub and its functions to
use an instance of this class.

programrunner – run user programs

This module handles the running of user programs (i.e. the Scratch/Python
programs that live in the program slots on the system).

Functions

	
programrunner.filter_dict_len(???)

	???

	
programrunner.map_dirty(???)

	???

	
programrunner.filter_vm_vars(???)

	???

	
programrunner.sum_list_len(???)

	???

	
programrunner.filter_vm_lists(???)

	???

	
programrunner.setup_vm(???)

	Generator function. ???

	
programrunner.untuple_vm_vars(???)

	Generator function. ???

Constants

	
programrunner._EMPTY_DICT = {}

	???

Class ProgramRunner

	
class programrunner.ProgramRunner(???)

	???

Methods

	
vm_has_extension(???)

	???

	
start_program(???)

	???

	
is_running(???)

	???

	
start_notify_loop(???)

	Generator function. ???

	
notify_all_state(???)

	???

	
stop_all(???)

	???

Constants

	
IDLE = 0

	???

	
RUNNING_NONBLOCKING = 1

	???

	
RUNNING_BLOCKING = 2

	???

Imports

	Module util.sensors – sensors utility module

	Module sys – system specific functions

	Module hub – hub brick functionality

	Module gc – control the garbage collector

	Module protocol.notifications – ???

	Class runtime.virtualmachine.VirtualMachine

	Function micropython.const

	Function event_loop.get_event_loop

	Function util.resetter.wait_until_ready_after_restart

	Function util.rotation.rotate_hub_display_to_orientation

	Function util.storage.get_path

	Function util.storage.set_force_reset

	Function util.storage.get_program_project_id

	Function util.storage.get_program_type

	Function util.time.reset_time

	Function util.time.stop_time

	Constant util.constants.LPF2_FLIPPER_DISTANCE = 62

	Constant util.constants.TIMER_PACE_LOW = 48

	Constant util.constants.TIMER_PACE_HIGH = 16

	Constant util.storage.PROGRAM_TYPE_PYTHON = python

	Constant util.storage.PROGRAM_TYPE_SCRATCH = scratch

	Constant util.error_handler.PROGRAM_EXECUTION_ERROR = 0

	Constant util.error_handler.PROGRAM_EXECUTION_MEMORY_ERROR = 1

	Constant util.error_handler.error_handler = <Main ErrorHandler object>

protocol – RI5 communication protocol

This module handles the communication protocol that the RI5 uses when talking
over USB/Bluetooth to a controller app. The protocol uses a specific json
format. The base module has three submodules, and aliases
protocol.rpc_protocol.RPCProtocol as protocol.RPCProtocol for convenience.

Submodules

	protocol.notifications – ???

	protocol.rpc_protocol – ???

	protocol.ujsonrpc – ???

protocol.notifications – ???

???

Functions

	
protocol.notifications.notify_error_event(???)

	???

	
protocol.notifications.notify_sensor_data(???)

	???

	
protocol.notifications.notify_storage_status(???)

	???

	
protocol.notifications.notify_stack_start(???)

	???

	
protocol.notifications.notify_battery_status(???)

	???

	
protocol.notifications.notify_program_running(???)

	???

	
protocol.notifications.notify_gesture_event(???)

	???

	
protocol.notifications.notify_info_status(???)

	???

	
protocol.notifications.notify_vm_state(???)

	???

	
protocol.notifications.notify_stack_stop(???)

	???

	
protocol.notifications.notify_linegraph_timer_reset(???)

	???

	
protocol.notifications.notify_debug_event(???)

	???

	
protocol.notifications.notify_button_event(???)

	???

	
protocol.notifications.notify_gesture_status(???)

	???

Constants

	
protocol.notifications._RQ_LEN = run_queue_len

	???

	
protocol.notifications._MEM = mem_alloc

	???

	
protocol.notifications._D = mem_delta

	???

	
protocol.notifications._DEBUG_PAYLOAD = {'wait_queue_len': 0, 'mem_delta': 0, 'run_queue_len': 0, 'mem_alloc': 0}

	???

	
protocol.notifications._WQ_LEN = wait_queue_len

	???

Imports

	Module hub – hub brick functionality

	Function gc.mem_alloc

	Function micropython.const

	Function ubinascii.b2a_base64

	Function util.storage.get_storage_information

	Function util.storage.read_local_name

	Variable util.sensors.battery_status

	Variable util.sensors.sensor_data

protocol.rpc_protocol – ???

Aside from importing various functions from elsewhere, this module just
contains the RPCProtocol class.

RPCProtocol Class

	
class protocol.rpc_protocol.RPCProtocol(???)

	???

	
register_method_handlers(???)

	???

	
_register_method_handler(???)

	???

	
looper(???)

	Generator method. ???

	
property stream

	???

Imports

	Function event_loop.get_event_loop

	Function micropython.const

	Function protocol.notifications.notify_battery_status

	Function protocol.notifications.notify_debug_event

	Function protocol.notifications.notify_sensor_data

	Function util.sensors.update_battery_status

	Function util.sensors.update_sensor_data

	Class protocol.ujsonrpc.JSONRPC

protocol.ujsonrpc – ???

???

Constants

	
protocol.ujsonrpc._ID_PREFIX = b'{"i":'

	???

	
protocol.ujsonrpc._PARAMS = b',"p":'

	???

	
protocol.ujsonrpc._ID = b',"i":'

	???

	
protocol.ujsonrpc._ERROR = b',"e":'

	???

	
protocol.ujsonrpc._SUFFIX = b'}\r'

	???

	
protocol.ujsonrpc._SUSPENDED_MSG_PATH_ = ./suspended_msg

	???

	
protocol.ujsonrpc._CARRIAGE_RETURN = b'\r'

	???

	
protocol.ujsonrpc.NO_RESPONSE = {}

	???

	
protocol.ujsonrpc._METHOD_PREFIX = b'{"m":'

	???

	
protocol.ujsonrpc._RESPONSE = b',"r":'

	???

JSONRPC Class

	
class protocol.ujsonrpc.JSONRPC(???)

	???

Methods

	
_pop_suspend_message(???)

	???

	
clear_methods(???)

	???

	
emit_large(???)

	???

	
reply(???)

	???

	
_handle_message(???)

	???

	
suspend_current_message(???)

	???

	
error(???)

	???

	
add_method(???)

	???

	
parse_chunk(???)

	???

	
cancel_call(???)

	???

	
parse_buffer(???)

	???

	
emit(???)

	???

	
call(???)

	???

	
resume_suspended_msg(???)

	???

	
property stream

	???

Fields
.. data:: pending

??? Default value = {}

Method Dictionary

	
methods = {'scratch.display_animation': <bound_method>, 'scratch.motor_pwm': <bound_method>, 'set_hub_name': <bound_method>, 'scratch.play_sound': <bound_method>, 'get_linegraph_monitor_info': <bound_method>, 'reset_program_time': <bound_method>, 'set_port_mode': <bound_method>, 'scratch.motor_go_direction_to_position': <bound_method>, 'sync_display': <bound_method>, 'scratch.reset_yaw': <bound_method>, 'scratch.when_sensor_changed': <bound_method>, 'scratch.motor_run_timed': <bound_method>, 'scratch.move_stop': <bound_method>, 'program_execute': <bound_method>, 'scratch.when_sensor_force_released': <bound_method>, 'remove_project': <bound_method>, 'start_write_program': <bound_method>, 'get_storage_status': <bound_method>, 'scratch.sound_beep': <bound_method>, 'scratch.sound_off': <bound_method>, 'scratch.display_set_pixel': <bound_method>, 'scratch.ultrasonic_light_up': <bound_method>, 'scratch.motor_start': <bound_method>, 'delete_linegraph_file': <bound_method>, 'program_terminate': <bound_method>, 'scratch.display_rotate_direction': <bound_method>, 'scratch.display_image': <bound_method>, 'scratch.move_start_powers': <bound_method>, 'scratch.sound_beep_for_time': <bound_method>, 'get_program_time': <bound_method>, 'move_project': <bound_method>, 'get_hub_info': <bound_method>, 'scratch.center_button_lights': <bound_method>, 'scratch.motor_position': <bound_method>, 'scratch.move_start_speeds': <bound_method>, 'program_modechange': <bound_method>, 'scratch.move_tank_degrees': <bound_method>, 'scratch.motor_go_to_relative_position': <bound_method>, 'write_package': <bound_method>, 'scratch.display_rotate_orientation': <bound_method>, 'scratch.display_image_for': <bound_method>, 'scratch.when_sensor_force_bumped': <bound_method>, 'scratch.move_tank_time': <bound_method>, 'scratch.wait_gesture': <bound_method>, 'scratch.motor_run_for_degrees': <bound_method>, 'trigger_current_state': <bound_method>, 'scratch.display_clear': <bound_method>, 'scratch.motor_stop': <bound_method>, 'scratch.motor_adjust_offset': <bound_method>, 'start_program_time': <bound_method>, 'scratch.motor_set_position': <bound_method>, 'scratch.display_text': <bound_method>, 'get_linegraph_monitor_package': <bound_method>}

	Seems to be a lookup table binding scratch API commands to specific
methods?

Imports

	Module ujson – JSON encoding and decoding

	Module uos – basic “operating system” services

	Module urandom – random number generation

	Function ubinascii.b2a_base64

	Function utime.sleep_ms

	Constant uerrno.ENOENT = 2

	Class uio.StringIO

runtime – runtime module

Contains mainly stack and virtual machine details needed to run programs on the
hub.

Classes runtime.stack.Stack, runtime.virtualmachine.VirtualMachine and
runtime.multimotor.MultiMotor have shortcut aliases in the main namespace.

Submodules

	runtime.dirty_dict – ???

	runtime.multimotor – ???

	runtime.stack – ???

	runtime.timer – ???

	runtime.virtualmachine – ???

	runtime.vm_store – ???

runtime.dirty_dict – ???

Contains the DirtyDict class. ???

DirtyDict Class

	
class runtime.dirty_dict.DirtyDict(???)

	???

	
__delitem__(???)

	Closure function. ???

	
_mark_dirty(???)

	???

	
dict_get(???)

	???

	
list_insert(???)

	???

	
__init__(???)

	Closure function. ???

	
list_del(???)

	???

	
list_clear(???)

	???

	
setitem(???)

	Closure function. ???

	
dict_set(???)

	???

	
list_append(???)

	???

	
list_set(???)

	???

	
dirty_items(???)

	Generator function. ???

	
clear(???)

	Closure function. ???

runtime.multimotor – ???

Contains the MultiMotor class. ???

MultiMotor Class

	
class runtime.multimotor.MultiMotor(???)

	???

	
await_all(???)

	Generator function. ???

	
run(???)

	???

runtime.stack – ???

Contains the Stack class. ???

Stack Class

	
class runtime.stack.Stack(???)

	???

Methods
.. method:: is_active(???)

???

	
should_start(???)

	???

	
_check_condition(???)

	Generator function. ???

	
stop(???)

	???

	
restart(???)

	???

	
start(???)

	???

Constants
.. data:: STATUS_RUNNING

	value

	10

???

	
STATUS_IDLE = 20

	???

	
STATUS_WAITING = 30

	???

	
ON_START = 0

	???

	
ON_BROADCAST = 1

	???

	
ON_BUTTON = 2

	???

	
ON_GESTURE = 3

	???

	
ON_CONDITION = 4

	???

Imports

	Function micropython.const

	Function protocol.notifications.notify_stack_start

	Function protocol.notifications.notify_stack_stop

runtime.timer – ???

???

Functions

	
runtime.timer.reset(???)

	???

	
runtime.timer.get(???)

	???

Constants

	
runtime.timer.START_TIME = 0

	???

Imports

	Module utime – time related functions

runtime.virtualmachine – ???

Contains the VirtualMachine class. ???

VirtualMachine Class

	
class runtime.virtualmachine.VirtualMachine(???)

	???

Methods

	
register_on_condition(???)

	???

	
register_on_start(???)

	???

	
register_callback(???)

	???

	
register_on_gesture(???)

	???

	
register_on_button(???)

	???

	
register_on_broadcast(???)

	???

	
reset_time(???)

	???

	
shutdown(???)

	???

	
reset_timer(???)

	???

	
stop_stacks(???)

	???

	
schedule_coroutine(???)

	???

	
broadcast(???)

	???

	
check_all_conditions(???)

	Generator function. ???

	
get_time(???)

	???

	
start(???)

	???

Imports

	Module hub – hub brick functionality

	Module runtime.timer – ???

	Class protocol.ujsonrpc.JSONRPC

	Class runtime.dirty_dict.DirtyDict

	Class runtime.stack.Stack

	Class runtime.vm_store.VMStore

	Class system.System

	Function util.time.get_time

	Function util.time.reset_time

	Constant util.constants.PORTS = {‘C’: Port(C), ‘B’: Port(B), ‘D’: Port(D), ‘E’: Port(E), ‘A’: Port(A), ‘F’: Port(F)}

runtime.vm_store – ???

???

Functions

	
runtime.vm_store.add_prop(???)

	???

	
runtime.vm_store.add_port_prop(???)

	???

Constants

	
runtime.vm_store._STOP = 1

	???

	
runtime.vm_store._STALL = True

	???

	
runtime.vm_store._PCALIB = 17.5

	???

	
runtime.vm_store._LOC = Billund

	???

	
runtime.vm_store._PAIR = ('A', 'B')

	???

	
runtime.vm_store._STAT = 0

	???

	
runtime.vm_store._ACCEL = (None, None)

	???

VMStore Class

	
class runtime.vm_store.VMStore(???)

	???

Methods

	
move_speed(???)

	Closure function. ???

	
move_last_status(???)

	Closure function. ???

	
move_stop(???)

	Closure function. ???

	
move_calibration(???)

	Closure function. ???

	
move_acceleration(???)

	Closure function. ???

	
move_pair(???)

	Closure function. ???

	
motor_acceleration(???)

	Closure function. ???

	
motor_stall(???)

	Closure function. ???

	
motor_last_status(???)

	Closure function. ???

	
motor_speed(???)

	Closure function. ???

	
motor_stop(???)

	Closure function. ???

	
music_tempo(???)

	Closure function. ???

	
music_instrument(???)

	Closure function. ???

	
sound_pitch(???)

	Closure function. ???

	
sound_volume(???)

	Closure function. ???

	
sound_pan(???)

	Closure function. ???

	
weather_location(???)

	Closure function. ???

	
weather_offset(???)

	Closure function. ???

	
display_brightness(???)

	Closure function. ???

Imports

	Class runtime.dirty_dict.DirtyDict

	Function `micropython.const

	Constant util.constants.BRAKE = 1

	Constant util.constants.SUCCESS = 0

spike – Spike Prime branding of the user API

This module seems to be purely designed as a frontend for the _api – user API module,
so that Spike Prime documentation can tell its users to import a module with a
related name.

See _api – user API for the majority of submodules and classes, all of which can also
be called from the spike module by using it as a synonym for “_api”.

Classes

	
class spike.PrimeHub

	The actual class appears to have no methods or functions of its own, but it
seems to be a superclass of _api.large_technic_hub.LargeTechnicHub so
inherits everything from there.

The API expects most access to the central Technic Hub and its functions to
use an instance of this class.

system – system module

Module containing a lot of high-level concepts, but no obvious theme beyond
that.

Classes system.callbacks.Callbacks, system.display.DisplayWrapper,
system.move.Movement, system.motors.Motors, system.sound.SoundWrapper
have aliases in the main namespace for convenience.

Constants

	
system.system

	Reference to the main System object.

System Class

	
class system.System(???)

	???

	
reset(???)

	???

Submodules

	system.callbacks – ???

	system.motors – ???

	system.motorwrapper – ???

	system.sound – ???

	system.move – ???

	system.movewrapper – ???

	system.abstractwrapper – ???

	system.display – ???

Imports

	Module hub – hub brick functionality

	Function event_loop.get_event_loop

system.callbacks – ???

???

The main namespace contains an alias for
system.callbacks.customcallbacks.CustomSensorCallbackManager for convenience.

Submodules

	system.callbacks.customcallbacks – ???

Classes

	
class system.callbacks.Callbacks(???)

	???

	
reset(???)

	???

	
hard_reset(???)

	???

	
class system.callbacks.ButtonCallbacks(???)

	???

	
reset(???)

	???

	
hard_reset(???)

	???

	
register_rpc_handlers(???)

	???

	
__getitem__(???)

	???

	
class system.callbacks.PortCallbacks(???)

	???

	
reset(???)

	???

	
hard_reset(???)

	???

	
init_attach(???)

	???

	
__getitem__(???)

	???

	
class system.callbacks.CallbackHandler(???)

	???

	
reset(???)

	???

	
hard_reset(???)

	???

	
callback(???)

	???

	
register(???)

	???

	
register_single(???)

	???

	
register_persistent(???)

	???

	
class system.callbacks.ConnectionCallbacks(???)

	???

	
__uch(???)

	???

	
check_state(???)

	???

Imports

	Module hub – hub brick functionality

	Function protocol.notifications.notify_button_event

	Function util.schedule.mp_schedule

	Constant util.constants.BT_VCP = BT_VCP(0) <Bluetooth connection object>

	Constant util.constants.USB_VCP = USB_VCP(0) <USB connection object>

	Constant util.error_handler.error_handler = <Main ErrorHandler object>

system.callbacks.customcallbacks – ???

???

Classes

	
class system.callbacks.customcallbacks.CustomSensorCallbackManager(???)

	???

Methods

	
static is_less_than(???)

	???

	
static did_bump(???)

	???

	
static did_change(???)

	???

	
until(???)

	Generator function. ???

	
until_less_than(???)

	Generator function. ???

	
until_force_bumped(???)

	Generator function. ???

	
until_changed(???)

	Generator function. ???

	
wait_until_less_than(???)

	???

	
wait_until_force_bumped(???)

	???

	
wait_until_changed(???)

	???

	
_start_test_task(???)

	???

	
remove_task(???)

	???

	
clear_tasks(???)

	???

Variables

	
_active_tasks

	??? Observed value: []

Imports

	Module utime – time related functions

	Function event_loop.get_event_loop

	Function micropython.const

	Function util.sensors.get_sensor_value

	Constant util.constants.LPF2_FLIPPER_FORCE = 63

system.motors – ???

???

Constants

	
system.motors._PORT_TO_IDX = ['A', 'B', 'C', 'D', 'E', 'F']

	A list to help mapping hub port names to index values.

Motors Class

	
class system.motors.Motors(???)

	???

Methods

	
register_port_callback_handlers(???)

	???

	
on_port(???)

	???

	
is_motor(???)

	???

	
_update(???)

	???

Variables

	
wrappers

	??? Observed value: {}

Imports

	Module hub – hub brick functionality

	Class system.motorwrapper.MotorWrapper

	Constant util.constants.PORTS = {‘C’: Port(C), ‘B’: Port(B), ‘D’: Port(D), ‘E’: Port(E), ‘A’: Port(A), ‘F’: Port(F)}

system.motorwrapper – ???

???

Functions

	
system.motorwrapper._shortest(???)

	???

	
system.motorwrapper._calc_degrees(???)

	???

	
system.motorwrapper._clockwise(???)

	???

	
system.motorwrapper._counterclockwise(???)

	???

MotorWrapper Class

	
class system.motorwrapper.MotorWrapper(???)

	???

Methods

	
__init__(???)

	Closure function. ???

	
run_at_speed(???)

	???

	
run_at_speed_async(???)

	Generator function. ???

	
run_for_degrees(???)

	???

	
run_for_degrees_async(???)

	Generator function. ???

	
run_to_position(???)

	???

	
run_to_position_async(???)

	Generator function. ???

	
run_to_relative_position(???)

	???

	
run_to_relative_position_async(???)

	Generator function. ???

	
run_for_time(???)

	???

	
run_for_time_async(???)

	Generator function. ???

	
pwm(???)

	???

	
stop(???)

	???

	
brake(???)

	???

	
hold(???)

	???

	
get(???)

	???

	
preset(???)

	???

	
float(???)

	???

Variables

	
motor

	??? Observed value: None

Imports

	Class system.abstractwrapper.AbstractWrapper

	Function micropython.const

	Constant util.constants.SUCCESS = 0

	Constant util.constants.FLOAT = 0

	Constant util.constants.BRAKE = 1

	Constant util.constants.HOLD = 2

system.sound – ???

???

SoundWrapper Class

	
class system.sound.SoundWrapper(???)

	???

Methods

	
__init__(???)

	Closure function. ???

	
beep(???)

	???

	
beep_async(???)

	Generator function. ???

	
play(???)

	???

	
play_async(???)

	Generator function. ???

Imports

	Module hub – hub brick functionality

	Class system.abstractwrapper.AbstractWrapper

	Function util.scratch.note_to_frequency

system.move – ???

???

Movement Class

	
class system.move.Movement(???)

	???

Methods

	
on_pair(???)

	???

Variables

	
_pairs

	??? Observed value: {}

Imports

	Class system.movewrapper.MoveWrapper

	Constant util.constants.PORTS = {‘C’: Port(C), ‘B’: Port(B), ‘D’: Port(D), ‘E’: Port(E), ‘A’: Port(A), ‘F’: Port(F)}

system.movewrapper – ???

???

Functions

	
system.movewrapper.from_steering(???)

	???

MoveWrapper Class

	
class system.movewrapper.MoveWrapper(???)

	???

Methods

	
__init__(???)

	Closure function. ???

	
move_for_time(???)

	???

	
move_for_time_async(???)

	Generator function. ???

	
move_differential_speed(???)

	???

	
move_differential_speed_async(???)

	Generator function. ???

	
move_at_power(???)

	???

	
start_at_speeds(???)

	???

	
start_at_powers(???)

	???

	
stop(???)

	???

	
brake(???)

	???

	
float(???)

	???

	
hold(???)

	???

	
_direction_to_steering(???)

	???

	
from_direction(???)

	???

	
from_steering(???)

	???

	
is_valid(???)

	???

	
unpair(???)

	???

Variables

	
pair

	??? Observed value: None

Imports

	Class system.abstractwrapper.AbstractWrapper

	Constant util.constants.SUCCESS = 0

	Constant util.constants.FLOAT = 0

	Constant util.constants.BRAKE = 1

	Constant util.constants.HOLD = 2

system.abstractwrapper – ???

???

AbstractWrapper Class

	
class system.abstractwrapper.AbstractWrapper(???)

	???

Methods

	
await_callback(???)

	Generator function. ???

	
_callback(???)

	???

	
_register(???)

	???

	
cancel(???)

	???

Imports

	Function event_loop.get_event_loop

	Function micropython.const

	Constant util.constants.SUCCESS = 0

	Constant util.constants.INTERRUPTED = 1

system.display – ???

???

Functions

	
system.display.sanitize(???)

	???

DisplayWrapper Class

	
class system.display.DisplayWrapper(???)

	???

Methods

	
__init__(???)

	Closure function. ???

	
show(???)

	???

	
show_async(???)

	Generator function. ???

	
write(???)

	???

	
write_async(???)

	Generator function. ???

	
clear(???)

	???

	
pixel(???)

	???

Imports

	Module hub – hub brick functionality

	Class system.abstractwrapper.AbstractWrapper

	Constant util.constants.SUCCESS = 0

ui.hubui – menu system

Runs the menu system that you see when you boot up the Hub (and between running
programs). The entire functionality is contained in submodule ui.hubui,
although the main module also aliases the ui.hubui.HubUI class as ui.HubUI.

Functions

	
ui.hubui.reset(???)

	???

	
ui.hubui.user_interaction(???)

	???

Variables

	
ui.hubui._latest_activity

	???

Constants

	
ui.hubui.INACTIVE_SHUTDOWN_BT_MS = 1200000

	???

	
ui.hubui.INACTIVE_SHUTDOWN_MS = 300000

	???

	
ui.hubui.DEFAULT_IMAGE = (Image('09090:99999:99999:09990:00900:'), Image('09000:09900:09990:09900:09000:'))

	???

	
ui.hubui.SLOTS_IMAGE = (Image('09990:09090:09090:09090:09990:'), Image('00900:09900:00900:00900:09990:'), Image('09990:00090:09990:09000:09990:'), Image('09990:00090:09990:00090:09990:'), Image('09090:09090:09990:00090:00090:'), Image('09990:09000:09990:00090:09990:'), Image('09990:09000:09990:09090:09990:'), Image('09990:00090:00900:09000:09000:'), Image('09990:09090:09990:09090:09990:'), Image('09990:09090:09990:00090:09990:'), Image('90999:90909:90909:90909:90999:'), Image('09009:99099:09009:09009:09009:'), Image('90999:90009:90999:90900:90999:'), Image('90999:90009:90999:90009:90999:'), Image('90909:90909:90999:90009:90009:'), Image('90999:90900:90999:90009:90999:'), Image('90999:90900:90999:90909:90999:'), Image('90999:90009:90090:90900:90900:'), Image('90999:90909:90999:90909:90999:'), Image('90999:90909:90999:90009:90999:'))

	???

Class HubUI

	
class ui.hubui.HubUI(???)

	???

Methods

	
__bt_disconnect(???)

	???

	
__toggle_program(???)

	???

	
__change_slot(???)

	Closure function. ???

	
_program_start(???)

	Generator function. ???

	
stop_all(???)

	Closure function. ???

	
change_execution_mode(???)

	Closure function. ???

	
start_program(???)

	Closure function. ???

	
__cancel_animations(???)

	???

	
__start_autoshutdown(???)

	???

	
__on_center_button(???)

	Closure function. ???

	
_program_stop(???)

	Generator function. ???

	
__get_slot_image(???)

	???

	
__on_connect_button(???)

	Closure function. ???

	
__bt_connect(???)

	???

	
will_stop_restart(???)

	???

	
__shutdown_timer(???)

	???

	
on_connection(???)

	Closure function. ???

Properties

	
property idle

	???

Imports

	Module hub – hub brick functionality

	Module utime – time related functions

	Class ProgramRunner

	Class Sounds

	Class system.System

	Function event_loop.get_event_loop

	Function micropython.const

	Function util.animations.bootup_animation

	Generator function util.animations.bt_animation

	Function util.animations.download_animation

	Generator function util.animations.led_fade_to

	Function util.animations.shutdown_animation

	Function util.animations.streaming_animation

	Generator function util.animations.shift_in_from_bottom

	Generator function util.animations.shift_out_to_bottom

	Function util.storage.get_used_slots

	Constant util.color.DIM_WHITE = (135, 25, 10)

	Constant util.color.WHITE = (255, 70, 35)

util – misc utility module

Contains various miscellaneous utility sub-modules.

Submodules

	util.resetter – resetting utility module

	util.color – color utility module

	util.animations – animation utility module

	util.motor – motor utility module

	util.scratch – scratch utility module

	util.storage – storage utility module

	util.sensors – sensors utility module

	util.time – time utility module

	util.error_handler – error handling utility module

	util.log – log utility module

	util.schedule – scheduling utility module

	util.print_override – remote printing module

	util.constants – constants module

	util.rotation – rotation utility module

util.resetter – resetting utility module

???

Functions

	
util.resetter.wait_until_ready_after_restart(???)

	???

Variables

	
util.resetter._STARTED_AT

	??? Observed value: 3380

RTTimer Class

	
class util.resetter.RTTimer(???)

	???

	
__repl_reset(???)

	???

	
repl_reset(???)

	???

	
start(???)

	???

Imports

	Module hub – hub brick functionality

	Function micropython.schedule

	Function utime.sleep_ms

	Function utime.ticks_diff

	Function utime.ticks_ms

util.color – color utility module

???

Functions

	
util.color.color_percentage(???)

	???

	
util.color.get_color_percentage(???)

	???

	
util.color.rgb_percentage(???)

	???

	
util.color.get_rgb_percentage(???)

	???

Constants

	
util.color.BLACK = (0, 0, 0)

	

	
util.color.BLUE = (0, 0, 80)

	

	
util.color.AZURE = (0, 57, 57)

	

	
util.color.GREEN = (0, 195, 0)

	

	
util.color.DIM_WHITE = (135, 25, 10)

	

	
util.color.RED = (255, 0, 0)

	

	
util.color.VIOLET = (255, 8, 23)

	

	
util.color.YELLOW = (255, 35, 0)

	

	
util.color.WHITE = (255, 70, 35)

	Convenience constants for various colors in (R,G,B)-tuple format.

util.animations – animation utility module

???

Functions

	
util.animations.shift_left(???)

	???

	
util.animations.shift_right(???)

	???

	
util.animations.shift_out_to_top(???)

	Generator function. ???

	
util.animations.shift_in_from_right(???)

	Generator function. ???

	
util.animations.shift_in_from_bottom_left(???)

	Generator function. ???

	
util.animations.shift_out_to_bottom(???)

	Generator function. ???

	
util.animations.shift_out_to_left(???)

	Generator function. ???

	
util.animations.shift_in_from_left(???)

	Generator function. ???

	
util.animations.shift_in_from_bottom(???)

	Generator function. ???

	
util.animations.shift_out_to_right(???)

	Generator function. ???

	
util.animations.shift_in_from_top_right(???)

	Generator function. ???

	
util.animations.shift_in_from_top(???)

	Generator function. ???

	
util.animations.streaming_animation(???)

	???

	
util.animations.download_animation(???)

	???

	
util.animations.bootup_animation(???)

	???

	
util.animations.shutdown_animation(???)

	???

	
util.animations.bt_animation(???)

	Generator function. ???

	
util.animations.led_fade_to(???)

	Generator function. ???

	
util.animations.led_fade_in_out(???)

	Generator function. ???

	
util.animations.chain_animations(???)

	Generator function. ???

Constants

	
util.animations.DISPLAY_WIDTH = 5

	

	
util.animations.DISPLAY_HEIGHT = 5

	Constants for the display dimensions.

	
util.animations.BOOTUP_FRAMES = (Image('00000:00000:09000:00000:00000:'), Image('00000:00000:07000:00000:00000:'), Image('00000:00000:07000:00009:00000:'), Image('00000:00000:07000:00007:00000:'), Image('00000:00000:07000:90007:00000:'), Image('00000:00000:07000:70007:00000:'), Image('00000:90000:07000:70007:00000:'), Image('00000:70000:07000:70007:00000:'), Image('00000:70000:07000:70007:00900:'), Image('00000:70000:07000:70007:00700:'), Image('00000:70900:07000:70007:00700:'), Image('00090:70800:07000:70007:00700:'), Image('00080:70800:07000:79007:00700:'), Image('00080:70700:07090:78007:00700:'), Image('00070:70700:07080:78007:90700:'), Image('09070:70700:07070:77007:80700:'), Image('08070:70700:07070:77007:80709:'), Image('08079:70700:07070:77007:70708:'), Image('07078:70700:07070:77907:70708:'), Image('07078:79700:07070:77707:70707:'), Image('07077:78700:07079:77707:70707:'), Image('07077:78700:07078:77707:79707:'), Image('07977:78700:07078:77707:78707:'), Image('07877:77700:07078:77797:78707:'), Image('07877:77709:07077:77787:78707:'), Image('07877:77708:97077:77787:77707:'), Image('07777:77708:87077:77787:77797:'), Image('07777:77798:87077:77777:77787:'), Image('97777:77787:87077:77777:77787:'), Image('87777:77787:87977:77777:77787:'), Image('99999:99999:99999:99999:99999:'), Image('77777:77777:77777:77777:77777:'), Image('66669:66669:66669:66669:66669:'), Image('55599:55595:55595:55595:55599:'), Image('44999:44949:44949:44949:44999:'), Image('39993:39393:39393:39393:39993:'), Image('09990:09090:09090:09090:09990:'))

	The set of image objects that are displayed on the bootup animation.

	
util.animations.SHUTDOWN_FRAMES = (Image('99999:90009:90009:90009:99999:'), Image('55555:57775:57075:57775:55555:'), Image('00000:09990:09090:09990:00000:'), Image('00000:05550:05750:05550:00000:'), Image('00000:00000:00900:00000:00000:'), Image('00000:00000:00500:00000:00000:'), Image('00000:00000:00000:00000:00000:'))

	The set of image objects that are displayed on the shutdown animation.

Imports

	Module hub – hub brick functionality

	Module utime – time related functions

	Class util.constants.Image

	Function util.color.color_percentage

	Function util.color.get_color_percentage

	Constant util.color.BLACK = (0, 0, 0)

	Constant util.color.DIM_WHITE = (135, 25, 10)

util.motor – motor utility module

???

Functions

	
util.motor.clamp_speed(???)

	???

	
util.motor.clamp_power(???)

	???

	
util.motor.dir_to_speed(???)

	???

util.scratch – scratch utility module

???

Functions

	
util.scratch.to_number(???)

	???

	
util.scratch.to_boolean(???)

	???

	
util.scratch.orientation_to_number(???)

	???

	
util.scratch.number_to_orientation(???)

	???

	
util.scratch.percent_to_int(???)

	???

	
util.scratch.percent_to_frequency(???)

	???

	
util.scratch.color_to_number(???)

	???

	
util.scratch.number_to_color(???)

	???

number_color_to_rgb – <function number_color_to_rgb at 0x200213e0>

	
util.scratch.note_to_frequency(???)

	???

	
util.scratch.pitch_to_freq(???)

	???

	
util.scratch.sanitize_ports(???)

	???

	
util.scratch.sanitize_movement_ports(???)

	???

	
util.scratch.clamp(???)

	???

	
util.scratch.wrap_clamp(???)

	???

	
util.scratch.partition_image_str(???)

	???

	
util.scratch.convert_image(???)

	???

	
util.scratch.convert_animation_frame(???)

	???

	
util.scratch.convert_brightness(???)

	???

	
util.scratch.adjust_brightness(???)

	???

	
util.scratch.compare(???)

	???

	
util.scratch.tan(???)

	???

	
util.scratch.is_int(???)

	???

	
util.scratch.get_variable(???)

	???

Constants

	
util.scratch.PAIR_REGEX = <regex object>

	???

	
util.scratch.ORIENTATIONS = ('', 'front', 'back', 'up', 'down', 'rightside', 'leftside')

	???

Imports

	Module math – mathematical functions

	Module ure – simple regular expressions

	Module util.color – color utility module

	Constant util.constants.NO_KEY = -1

	Constant util.constants.NUMBER = 0

	Constant util.constants.BOOLEAN = 2

	Constant util.constants.VAR_DEFAULTS = {0: 0, 1: ‘’, 2: False}

util.storage – storage utility module

???

Functions

	
util.storage.get_path(???)

	???

	
util.storage.get_storage_information(???)

	???

	
util.storage.generate_project_id(???)

	???

	
util.storage.read_local_name(???)

	???

	
util.storage.write_local_name(???)

	???

	
util.storage._ensure_folder_exists(???)

	???

	
util.storage._get_metadata(???)

	???

	
util.storage._set_metadata(???)

	???

	
util.storage.get_used_slots(???)

	???

	
util.storage.clear_slot(???)

	???

	
util.storage.move_slot(???)

	???

	
util.storage._move_slot_lookup(???)

	???

	
util.storage._file_to_slotid(???)

	???

	
util.storage.get_program_type(???)

	???

	
util.storage.get_program_project_id(???)

	???

	
util.storage.open_program(???)

	???

	
util.storage.read_program(???)

	???

	
util.storage.close_program(???)

	???

	
util.storage.set_force_reset(???)

	???

	
util.storage.pop_force_reset(???)

	???

Constants

	
util.storage._BT_PREFIX = LEGO Hub@

	???

	
util.storage.__FORCE_RESET_PATH__ = ./reset

	???

	
util.storage.__STORAGE_PATH__ = ./projects

	???

	
util.storage.__META_PATH__ = ./projects/.slots

	???

	
util.storage.__PROGRAM_PATH__ = ./projects/{0}

	???

	
util.storage.__PROGRAM_PATH_EXT__ = ./projects/{0}.py

	???

	
util.storage.PROGRAM_TYPE_PYTHON = python

	???

	
util.storage.PROGRAM_TYPE_SCRATCH = scratch

	???

Imports

	Module uos – basic “operating system” services

	Module urandom – random number generation

	Module ure – simple regular expressions

	Constant uerrno.ENOENT = 2

	Constant uerrno.EEXIST = 17

	Constant util.constants.LOCAL_NAME = /local_name.txt

util.sensors – sensors utility module

???

Functions

	
util.sensors.register_ports(???)

	???

	
util.sensors.is_type(???)

	???

	
util.sensors._is_motor(???)

	???

	
util.sensors._type_change_handler(???)

	???

	
util.sensors.get_sensor_value(???)

	???

	
util.sensors.update_sensor_data(???)

	???

	
util.sensors.update_battery_status(???)

	???

	
util.sensors.reset_to_default_mode(???)

	???

	
util.sensors.set_display_sync(???)

	???

	
util.sensors.current_motion(???)

	???

Variables

	
util.sensors.battery_status

	??? Observed value: [8.36, 100, True]

	
util.sensors.sensor_data

	??? Observed value: [[0, ()], [0, ()], [0, ()], [0, ()], [0, ()], [0, ()], (0, -805, 585), (3, 3, 0), (-3, 0, 54), ‘’, 0]

Constants

	
util.sensors._PORTS = [Port(A), Port(B), Port(C), Port(D), Port(E), Port(F)]

	List of the six port objects of the six ports on the Hub. See hub.Port.

	
util.sensors._REVERSE_MODES = {48: [3, 0, 1, 2], 65: [3, 0, 1, 2], 49: [3, 0, 1, 2], 75: [3, 0, 1, 2], 76: [3, 0, 1, 2], 61: [1, 0, 2, 3, 4], 62: [0], 63: [0, 1, -1, -1, 2]}

	???

	
util.sensors._EVENT_MODE = [[], [], [], [], [], []]

	???

	
util.sensors._PORT_INDEX_MAP = ['A', 'B', 'C', 'D', 'E', 'F', 'ACCELEROMETER', 'GYROSCOPE', 'POSITION', 'ORIENTATION', 'TIMER']

	???

	
util.sensors._PORT_TYPE = [0, 0, 0, 0, 0, 0]

	???

	
util.sensors._NO_DATA = ()

	???

	
util.sensors._SYNC_DISPLAY = False

	???

	
util.sensors._DEFAULT_MODE = {48: [(1, 0), (2, 2), (3, 1), (0, 0)], 65: [(1, 0), (2, 2), (3, 1), (1, 0)], 49: [(1, 0), (2, 2), (3, 1), (0, 0)], 75: [(1, 0), (2, 2), (3, 1), (0, 0)], 76: [(1, 0), (2, 2), (3, 1), (0, 0)], 61: [(1, 0), (0, 0), (5, 0), (5, 1), (5, 2)], 62: [(0, 0)], 63: [(0, 0), (1, 0), (4, 0)]}

	???

	
util.sensors._MOTOR_TYPES = [65, 48, 49, 75, 76]

	List of the LPF2 type IDs that correspond to motors.

Imports

	Module hub – hub brick functionality

	Function micropython.const

	Function util.scratch.orientation_to_number

	Function util.time.get_time

	Constant util.constants.LPF2_FLIPPER_MOTOR_MEDIUM = 48

	Constant util.constants.LPF2_FLIPPER_MOTOR_LARGE = 49

	Constant util.constants.LPF2_FLIPPER_COLOR = 61

	Constant util.constants.LPF2_FLIPPER_DISTANCE = 62

	Constant util.constants.LPF2_FLIPPER_FORCE = 63

	Constant util.constants.LPF2_FLIPPER_MOTOR_SMALL = 65

	Constant util.constants.LPF2_STONE_GREY_MOTOR_MEDIUM = 75

	Constant util.constants.LPF2_STONE_GREY_MOTOR_LARGE = 76

util.time – time utility module

???

Functions

	
util.time.reset_time(???)

	???

	
util.time.get_time(???)

	???

	
util.time.start_time(???)

	???

	
util.time.stop_time(???)

	???

Variables

	
util.time._STOPPED_AT

	??? Observed value: 0

	
util.time._STARTED_AT

	??? Observed value: 1680

	
util.time._RUNNING

	??? Observed value: False

Imports

	Function utime.ticks_diff

	Function utime.ticks_ms

util.error_handler – error handling utility module

???

Constants

	
util.error_handler.error_handler = <Main ErrorHandler object>

	

	
util.error_handler.PROGRAM_EXECUTION_ERROR = 0

	???

	
util.error_handler.PROGRAM_EXECUTION_MEMORY_ERROR = 1

	???

ErrorHandler Class

	
class util.error_handler.ErrorHandler(???)

	???

	
handle_user_program_error(???)

	???

	
handle_notify_error(???)

	???

	
handle_runtime_error(???)

	???

	
initialize(???)

	???

	
_emit_runtime_error(???)

	???

	
_handle_error(???)

	???

Imports

	Module hub – hub brick functionality

	Module protocol.notifications – ???

	Module sys – system specific functions

	Module uio – input/output streams

	Module ure – simple regular expressions

	Module version – version module

	Function event_loop.get_event_loop

	Function micropython.const

	Function ubinascii.b2a_base64

	Function util.log.log_critical_error

	Constant util.color.BLACK = (0, 0, 0)

	Constant util.color.RED = (255, 0, 0)

util.log – log utility module

???

Functions

	
util.log.log_to_file(???)

	???

	
util.log.log_critical_error(???)

	???

	
util.log.clear_log(???)

	???

	
util.log._write_to_log(???)

	???

	
util.log.timed_function(???)

	???

	
util.log.cat_log(???)

	???

Constants

	
util.log._LOG_FILE = ./runtime.log

	Location of the log file for logging.

Variables

	
util.log.timed_fn_buffer

	??? Observed value: []

Imports

	Module gc – control the garbage collector

	Module sys – system specific functions

	Module uio – input/output streams

	Module uos – basic “operating system” services

	Module utime – time related functions

util.schedule – scheduling utility module

???

Functions

	
util.schedule.mp_schedule(???)

	???

Imports

	Module micropython – access and control MicroPython internals

util.print_override – remote printing module

???

Functions

	
util.print_override.spikeprint(???)

	???

Constants

	
util.print_override._NOT_CONNECTED_ERROR = The programming app is not connected to the hub.

	Error message for when there’s no connection to the app (computer or phone).

Imports

	Module Builtin functions and exceptions

	Module uio – input/output streams

	Class protocol.ujsonrpc.JSONRPC

	Function ubinascii.b2a_base64

	Function utime.ticks_diff

	Function utime.ticks_ms

	Constant util.constants.BT_VCP = BT_VCP(0)

	Constant util.constants.USB_VCP = USB_VCP(0)

util.constants – constants module

???

Constants

	
util.constants.LPF2_FLIPPER_MOTOR_MEDIUM = 48

	

	
util.constants.LPF2_FLIPPER_MOTOR_LARGE = 49

	

	
util.constants.LPF2_ACCELERATION = 57

	

	
util.constants.LPF2_GYRO = 58

	

	
util.constants.LPF2_ORIENTATION = 59

	

	
util.constants.LPF2_FLIPPER_COLOR = 61

	

	
util.constants.LPF2_FLIPPER_DISTANCE = 62

	

	
util.constants.LPF2_FLIPPER_FORCE = 63

	

	
util.constants.LPF2_FLIPPER_MOTOR_SMALL = 65

	

	
util.constants.LPF2_STONE_GREY_MOTOR_MEDIUM = 75

	

	
util.constants.LPF2_STONE_GREY_MOTOR_LARGE = 76

	Constants to represent various types of input device. They correspond to
official PoweredUp/SpikePrime Type IDs - see for example
https://github.com/pybricks/technical-info/blob/master/assigned-numbers.md

	
util.constants.MOTOR_TYPES = (65, 48, 49, 75, 76)

	A tuple specifying which of the above types are motors.

	
util.constants.DEFAULT_IMAGE = (Image('09090:99999:99999:09990:00900:'), Image('09000:09900:09990:09900:09000:'))

	Two Image objects that are the default initial display screens on the
Spike Prime and the RI5 firmwares respectively.

	
util.constants.SLOTS_IMAGE = (Image('09990:09090:09090:09090:09990:'), Image('00900:09900:00900:00900:09990:'), Image('09990:00090:09990:09000:09990:'), Image('09990:00090:09990:00090:09990:'), Image('09090:09090:09990:00090:00090:'), Image('09990:09000:09990:00090:09990:'), Image('09990:09000:09990:09090:09990:'), Image('09990:00090:00900:09000:09000:'), Image('09990:09090:09990:09090:09990:'), Image('09990:09090:09990:00090:09990:'), Image('90999:90909:90909:90909:90999:'), Image('09009:99099:09009:09009:09009:'), Image('90999:90009:90999:90900:90999:'), Image('90999:90009:90999:90009:90999:'), Image('90909:90909:90999:90009:90009:'), Image('90999:90900:90999:90009:90999:'), Image('90999:90900:90999:90909:90999:'), Image('90999:90009:90090:90900:90900:'), Image('90999:90909:90999:90909:90999:'), Image('90999:90909:90999:90009:90999:'))

	Image objects shown in the menu system when navigating between slots
(they are the numbers 0 - 19).

	
util.constants.PORTS = {'C': Port(C), 'B': Port(B), 'D': Port(D), 'E': Port(E), 'A': Port(A), 'F': Port(F)}

	Dictionary mapping port names to the corresponding Port objects (see
hub.Port).

	
util.constants.FLOAT = 0

	

	
util.constants.BRAKE = 1

	

	
util.constants.HOLD = 2

	Modes of operation for stopping a motor. FLOAT simply removes power and
allows coasting, while BRAKE reverses power to stop the motor as soon as
possible, and HOLD mode will deliberately try to return to the braked point
if it is moved away from it.

	
util.constants.USB_VCP = USB_VCP(0)

	

	
util.constants.BT_VCP = BT_VCP(0)

	Aliases for the main USB and Bluetooth objects on the Hub. See
hub.USB_VCP and hub.BT_VCP.

	
util.constants.NO_KEY = -1

	

	
util.constants.NUMBER = 0

	

	
util.constants.STRING = 1

	

	
util.constants.BOOLEAN = 2

	

	
util.constants.VAR_DEFAULTS = {0: 0, 1: '', 2: False}

	Imported by util.scratch – scratch utility module. Seems to be representing basic scratch data
types numerically, with a dictionary to look up their default values.

	
util.constants.TIMER_PACE_LOW = 48

	

	
util.constants.TIMER_PACE_HIGH = 16

	Imported by programrunner – run user programs and hub_runtime – Hub main module. ???

	
util.constants.INACTIVE_SHUTDOWN_MS = 300000

	

	
util.constants.INACTIVE_SHUTDOWN_BT_MS = 1200000

	Imported by ui.hubui. Presumably they represent the length of inactive
time before the system shuts down. Perhaps when running alone, and when
connected to bluetooth?

	
util.constants.LONG_PRESS_MS = 3000

	Not obviously used anywhere. ???

	
util.constants.SUCCESS = 0

	

	
util.constants.INTERRUPTED = 1

	Seems to represent return codes of some function somewhere. Success code
is imported in various places. ???

	
util.constants.STALLED = 2

	Not obviously used anywhere. May belong to the previous group? ???

	
util.constants.NO_STATUS = -1

	Imported by various methods submodules in the commands – commands module module. ???

	
util.constants.DATA_DIR = /data

	

	
util.constants.LINEGRAPH_DIR = /data/linegraph

	

	
util.constants.LOCAL_NAME = /local_name.txt

	Important things in the local filesystem. ???

Sounds Class

	
class util.constants.Sounds(???)

	???

Constants

Looks like filesystem locations of sounds associated with certain system
operations.

	
NAVIGATION = sounds/menu_click

	???

	
NAVIGATION_FAST = sounds/menu_fastback

	???

	
STARTUP = sounds/startup

	???

	
SHUTDOWN = sounds/menu_shutdown

	???

	
PROGRAM_STOP = sounds/menu_program_stop

	???

	
PROGRAM_START = sounds/menu_program_start

	???

Image Class

	
class util.constants.Image(???)

	??? I’m not quite clear whether this class principally lives here or in
hub – hub brick functionality…

Methods

	
width(???)

	???

	
height(???)

	???

	
get_pixel(???)

	???

	
set_pixel(???)

	???

	
shift_left(???)

	???

	
shift_right(???)

	???

	
shift_up(???)

	???

	
shift_down(???)

	???

Constants

	
HEART = Image('09090:99999:99999:09990:00900:')

	

	
HEART_SMALL = Image('00000:09090:09990:00900:00000:')

	

	
HAPPY = Image('00000:09090:00000:90009:09990:')

	

	
SMILE = Image('00000:00000:00000:90009:09990:')

	

	
SAD = Image('00000:09090:00000:09990:90009:')

	

	
CONFUSED = Image('00000:09090:00000:09090:90909:')

	

	
ANGRY = Image('90009:09090:00000:99999:90909:')

	

	
ASLEEP = Image('00000:99099:00000:09990:00000:')

	

	
SURPRISED = Image('09090:00000:00900:09090:00900:')

	

	
SILLY = Image('90009:00000:99999:00909:00999:')

	

	
FABULOUS = Image('99999:99099:00000:09090:09990:')

	

	
MEH = Image('09090:00000:00090:00900:09000:')

	

	
YES = Image('00000:00009:00090:90900:09000:')

	

	
NO = Image('90009:09090:00900:09090:90009:')

	

	
CLOCK12 = Image('00900:00900:00900:00000:00000:')

	

	
CLOCK1 = Image('00090:00090:00900:00000:00000:')

	

	
CLOCK2 = Image('00000:00099:00900:00000:00000:')

	

	
CLOCK3 = Image('00000:00000:00999:00000:00000:')

	

	
CLOCK4 = Image('00000:00000:00900:00099:00000:')

	

	
CLOCK5 = Image('00000:00000:00900:00090:00090:')

	

	
CLOCK6 = Image('00000:00000:00900:00900:00900:')

	

	
CLOCK7 = Image('00000:00000:00900:09000:09000:')

	

	
CLOCK8 = Image('00000:00000:00900:99000:00000:')

	

	
CLOCK9 = Image('00000:00000:99900:00000:00000:')

	

	
CLOCK10 = Image('00000:99000:00900:00000:00000:')

	

	
CLOCK11 = Image('09000:09000:00900:00000:00000:')

	

	
ARROW_N = Image('00900:09990:90909:00900:00900:')

	

	
ARROW_NE = Image('00999:00099:00909:09000:90000:')

	

	
ARROW_E = Image('00900:00090:99999:00090:00900:')

	

	
ARROW_SE = Image('90000:09000:00909:00099:00999:')

	

	
ARROW_S = Image('00900:00900:90909:09990:00900:')

	

	
ARROW_SW = Image('00009:00090:90900:99000:99900:')

	

	
ARROW_W = Image('00900:09000:99999:09000:00900:')

	

	
ARROW_NW = Image('99900:99000:90900:00090:00009:')

	

	
GO_RIGHT = Image('09000:09900:09990:09900:09000:')

	

	
GO_LEFT = Image('00090:00990:09990:00990:00090:')

	

	
GO_UP = Image('00000:00900:09990:99999:00000:')

	

	
GO_DOWN = Image('00000:99999:09990:00900:00000:')

	

	
TRIANGLE = Image('00000:00900:09090:99999:00000:')

	

	
TRIANGLE_LEFT = Image('90000:99000:90900:90090:99999:')

	

	
CHESSBOARD = Image('09090:90909:09090:90909:09090:')

	

	
DIAMOND = Image('00900:09090:90009:09090:00900:')

	

	
DIAMOND_SMALL = Image('00000:00900:09090:00900:00000:')

	

	
SQUARE = Image('99999:90009:90009:90009:99999:')

	

	
SQUARE_SMALL = Image('00000:09990:09090:09990:00000:')

	

	
RABBIT = Image('90900:90900:99990:99090:99990:')

	

	
COW = Image('90009:90009:99999:09990:00900:')

	

	
MUSIC_CROTCHET = Image('00900:00900:00900:99900:99900:')

	

	
MUSIC_QUAVER = Image('00900:00990:00909:99900:99900:')

	

	
MUSIC_QUAVERS = Image('09999:09009:09009:99099:99099:')

	

	
PITCHFORK = Image('90909:90909:99999:00900:00900:')

	

	
XMAS = Image('00900:09990:00900:09990:99999:')

	

	
PACMAN = Image('09999:99090:99900:99990:09999:')

	

	
TARGET = Image('00900:09990:99099:09990:00900:')

	

	
TSHIRT = Image('99099:99999:09990:09990:09990:')

	

	
ROLLERSKATE = Image('00099:00099:99999:99999:09090:')

	

	
DUCK = Image('09900:99900:09999:09990:00000:')

	

	
HOUSE = Image('00900:09990:99999:09990:09090:')

	

	
TORTOISE = Image('00000:09990:99999:09090:00000:')

	

	
BUTTERFLY = Image('99099:99999:00900:99999:99099:')

	

	
STICKFIGURE = Image('00900:99999:00900:09090:90009:')

	

	
GHOST = Image('99999:90909:99999:99999:90909:')

	

	
SWORD = Image('00900:00900:00900:09990:00900:')

	

	
GIRAFFE = Image('99000:09000:09000:09990:09090:')

	

	
SKULL = Image('09990:90909:99999:09990:09990:')

	

	
UMBRELLA = Image('09990:99999:00900:90900:09900:')

	

	
SNAKE = Image('99000:99099:09090:09990:00000:')

	These are all Image objects containing the pictures suggested by their
names.

	
ALL_CLOCKS = (Image('00900:00900:00900:00000:00000:'), Image('00090:00090:00900:00000:00000:'), Image('00000:00099:00900:00000:00000:'), Image('00000:00000:00999:00000:00000:'), Image('00000:00000:00900:00099:00000:'), Image('00000:00000:00900:00090:00090:'), Image('00000:00000:00900:00900:00900:'), Image('00000:00000:00900:09000:09000:'), Image('00000:00000:00900:99000:00000:'), Image('00000:00000:99900:00000:00000:'), Image('00000:99000:00900:00000:00000:'), Image('09000:09000:00900:00000:00000:'))

	

	
ALL_ARROWS = (Image('00900:09990:90909:00900:00900:'), Image('00999:00099:00909:09000:90000:'), Image('00900:00090:99999:00090:00900:'), Image('90000:09000:00909:00099:00999:'), Image('00900:00900:90909:09990:00900:'), Image('00009:00090:90900:99000:99900:'), Image('00900:09000:99999:09000:00900:'), Image('99900:99000:90900:00090:00009:'))

	A couple of tuples of sets of images you might want to iterate though.

Imports

	Module hub – hub brick functionality

	Function micropython.const

util.rotation – rotation utility module

???

Functions

	
util.rotation.dir_to_rotation(???)

	???

	
util.rotation.rotate_hub_display(???)

	???

	
util.rotation.rotate_hub_display_to_value(???)

	???

	
util.rotation.rotate_hub_display_to_orientation(???)

	???

Variables

	
util.rotation._CURRENT_ROTATION

	??? Observed value: 0

Imports

	Module hub – hub brick functionality

hub_runtime – Hub main module

Seems to be the main module on the Hub, in charge of startup and error
handling.

Functions

	
hub_runtime.__connection_changed(???)

	???

	
hub_runtime.init(???)

	???

	
hub_runtime.start(???)

	???

Imports

	Module hub – hub brick functionality

	Module runtime – runtime module

	Module util.scratch – scratch utility module

	Module util.sensors – sensors utility module

	Class commands.LinegraphMonitorMethods

	Class commands.SoundMethods

	Class programrunner.ProgramRunner

	Class ui.hubui.HubUI

	Class commands.LightMethods

	Class commands.ProgramMethods

	Class commands.MotorMethods

	Class commands.HubMethods

	Class protocol.RPCProtocol

	Class commands.WaitMethods

	Class util.resetter.RTTimer

	Class class Timer – control hardware timers

	Class commands.MoveMethods

	Function event_loop.get_event_loop

	Function protocol.notifications.notify_gesture_event

	Function util.sensors.register_ports

	Function util.storage.pop_force_reset

	Constant system.system = <Main System object>

	Constant util.constants.BT_VCP = BT_VCP(0) <Bluetooth connection object>

	Constant util.constants.USB_VCP = USB_VCP(0) <USB connection object>

	Constant util.constants.TIMER_PACE_HIGH = 16

	Constant util.error_handler.error_handler = <Main ErrorHandler object>

version – version module

Just contains the version!

Constants

	
__version__ = 2.1.4-mindstorms.13

	

The MicroPython language

MicroPython aims to implement the Python 3.4 standard (with selected
features from later versions) with respect to language syntax, and most
of the features of MicroPython are identical to those described by the
“Language Reference” documentation at
docs.python.org [https://docs.python.org/3/reference/index.html].

The MicroPython standard library is described in the
corresponding chapter. The cpython_diffs
chapter describes differences between MicroPython and CPython (which
mostly concern standard library and types, but also some language-level
features).

This chapter describes features and peculiarities of MicroPython
implementation and the best practices to use them.

	Glossary

	The MicroPython Interactive Interpreter Mode (aka REPL)

	Writing interrupt handlers

	Maximising MicroPython Speed

	MicroPython on Microcontrollers

	Distribution packages, package management, and deploying applications

	Inline Assembler for Thumb2 architectures

Glossary

	baremetal
	A system without a (full-fledged) OS, for example an
MCU-based system. When running on a baremetal system,
MicroPython effectively becomes its user-facing OS with a command
interpreter (REPL).

	board
	A PCB board. Oftentimes, the term is used to denote a particular
model of an MCU system. Sometimes, it is used to actually
refer to MicroPython port to a particular board (and then
may also refer to “boardless” ports like
Unix port).

	callee-owned tuple
	A tuple returned by some builtin function/method, containing data
which is valid for a limited time, usually until next call to the
same function (or a group of related functions). After next call,
data in the tuple may be changed. This leads to the following
restriction on the usage of callee-owned tuples - references to
them cannot be stored. The only valid operation is extracting
values from them (including making a copy). Callee-owned tuples
is a MicroPython-specific construct (not available in the general
Python language), introduced for memory allocation optimization.
The idea is that callee-owned tuple is allocated once and stored
on the callee side. Subsequent calls don’t require allocation,
allowing to return multiple values when allocation is not possible
(e.g. in interrupt context) or not desirable (because allocation
inherently leads to memory fragmentation). Note that callee-owned
tuples are effectively mutable tuples, making an exception to
Python’s rule that tuples are immutable. (It may be interesting
why tuples were used for such a purpose then, instead of mutable
lists - the reason for that is that lists are mutable from user
application side too, so a user could do things to a callee-owned
list which the callee doesn’t expect and could lead to problems;
a tuple is protected from this.)

	CPython
	CPython is the reference implementation of Python programming
language, and the most well-known one, which most of the people
run. It is however one of many implementations (among which
Jython, IronPython, PyPy, and many more, including MicroPython).
As there is no formal specification of the Python language, only
CPython documentation, it is not always easy to draw a line
between Python the language and CPython its particular
implementation. This however leaves more freedom for other
implementations. For example, MicroPython does a lot of things
differently than CPython, while still aspiring to be a Python
language implementation.

	GPIO
	General-purpose input/output. The simplest means to control
electrical signals. With GPIO, user can configure hardware
signal pin to be either input or output, and set or get
its digital signal value (logical “0” or “1”). MicroPython
abstracts GPIO access using machine.Pin and machine.Signal
classes.

	GPIO port
	A group of GPIO pins, usually based on hardware
properties of these pins (e.g. controllable by the same
register).

	interned string
	A string referenced by its (unique) identity rather than its
address. Interned strings are thus can be quickly compared just
by their identifiers, instead of comparing by content. The
drawbacks of interned strings are that interning operation takes
time (proportional to the number of existing interned strings,
i.e. becoming slower and slower over time) and that the space
used for interned strings is not reclaimable. String interning
is done automatically by MicroPython compiler and runtimer when
it’s either required by the implementation (e.g. function keyword
arguments are represented by interned string id’s) or deemed
beneficial (e.g. for short enough strings, which have a chance
to be repeated, and thus interning them would save memory on
copies). Most of string and I/O operations don’t produce interned
strings due to drawbacks described above.

	MCU
	Microcontroller. Microcontrollers usually have much less resources
than a full-fledged computing system, but smaller, cheaper and
require much less power. MicroPython is designed to be small and
optimized enough to run on an average modern microcontroller.

	micropython-lib
	MicroPython is (usually) distributed as a single executable/binary
file with just few builtin modules. There is no extensive standard
library comparable with CPython. Instead, there is a related, but
separate project
micropython-lib [https://github.com/micropython/micropython-lib]
which provides implementations for many modules from CPython’s
standard library. However, large subset of these modules require
POSIX-like environment (Linux, FreeBSD, MacOS, etc.; Windows may be
partially supported), and thus would work or make sense only with
MicroPython Unix port. Some subset of modules is however usable
for baremetal ports too.

Unlike monolithic CPython stdlib, micropython-lib modules
are intended to be installed individually - either using manual
copying or using upip.

	MicroPython port
	MicroPython supports different boards, RTOSes,
and OSes, and can be relatively easily adapted to new systems.
MicroPython with support for a particular system is called a
“port” to that system. Different ports may have widely different
functionality. This documentation is intended to be a reference
of the generic APIs available across different ports (“MicroPython
core”). Note that some ports may still omit some APIs described
here (e.g. due to resource constraints). Any such differences,
and port-specific extensions beyond MicroPython core functionality,
would be described in the separate port-specific documentation.

	MicroPython Unix port
	Unix port is one of the major MicroPython ports.
It is intended to run on POSIX-compatible operating systems, like
Linux, MacOS, FreeBSD, Solaris, etc. It also serves as the basis
of Windows port. The importance of Unix port lies in the fact
that while there are many different boards, so
two random users unlikely have the same board, almost all modern
OSes have some level of POSIX compatibility, so Unix port serves
as a kind of “common ground” to which any user can have access.
So, Unix port is used for initial prototyping, different kinds
of testing, development of machine-independent features, etc.
All users of MicroPython, even those which are interested only
in running MicroPython on MCU systems, are recommended
to be familiar with Unix (or Windows) port, as it is important
productivity helper and a part of normal MicroPython workflow.

	port
	Either MicroPython port or GPIO port. If not clear
from context, it’s recommended to use full specification like one
of the above.

	stream
	Also known as a “file-like object”. An object which provides sequential
read-write access to the underlying data. A stream object implements
a corresponding interface, which consists of methods like read(),
write(), readinto(), seek(), flush(), close(), etc.
A stream is an important concept in MicroPython, many I/O objects
implement the stream interface, and thus can be used consistently and
interchangeably in different contexts. For more information on
streams in MicroPython, see uio module.

	upip
	(Literally, “micro pip”). A package manage for MicroPython, inspired
by CPython’s pip, but much smaller and with reduced functionality.
upip runs both on Unix port and on
baremetal ports (those which offer filesystem and networking
support).

The MicroPython Interactive Interpreter Mode (aka REPL)

This section covers some characteristics of the MicroPython Interactive
Interpreter Mode. A commonly used term for this is REPL (read-eval-print-loop)
which will be used to refer to this interactive prompt.

Auto-indent

When typing python statements which end in a colon (for example if, for, while)
then the prompt will change to three dots (…) and the cursor will be indented
by 4 spaces. When you press return, the next line will continue at the same
level of indentation for regular statements or an additional level of indentation
where appropriate. If you press the backspace key then it will undo one
level of indentation.

If your cursor is all the way back at the beginning, pressing RETURN will then
execute the code that you’ve entered. The following shows what you’d see
after entering a for statement (the underscore shows where the cursor winds up):

>>> for i in range(30):
... _

If you then enter an if statement, an additional level of indentation will be
provided:

>>> for i in range(30):
... if i > 3:
... _

Now enter break followed by RETURN and press BACKSPACE:

>>> for i in range(30):
... if i > 3:
... break
... _

Finally type print(i), press RETURN, press BACKSPACE and press RETURN again:

>>> for i in range(30):
... if i > 3:
... break
... print(i)
...
0
1
2
3
>>>

Auto-indent won’t be applied if the previous two lines were all spaces. This
means that you can finish entering a compound statement by pressing RETURN
twice, and then a third press will finish and execute.

Auto-completion

While typing a command at the REPL, if the line typed so far corresponds to
the beginning of the name of something, then pressing TAB will show
possible things that could be entered. For example, first import the machine
module by entering import machine and pressing RETURN.
Then type m and press TAB and it should expand to machine.
Enter a dot . and press TAB again. You should see something like:

>>> machine.
__name__ info unique_id reset
bootloader freq rng idle
sleep deepsleep disable_irq enable_irq
Pin

The word will be expanded as much as possible until multiple possibilities exist.
For example, type machine.Pin.AF3 and press TAB and it will expand to
machine.Pin.AF3_TIM. Pressing TAB a second time will show the possible
expansions:

>>> machine.Pin.AF3_TIM
AF3_TIM10 AF3_TIM11 AF3_TIM8 AF3_TIM9
>>> machine.Pin.AF3_TIM

Interrupting a running program

You can interrupt a running program by pressing Ctrl-C. This will raise a KeyboardInterrupt
which will bring you back to the REPL, providing your program doesn’t intercept the
KeyboardInterrupt exception.

For example:

>>> for i in range(1000000):
... print(i)
...
0
1
2
3
...
6466
6467
6468
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>
KeyboardInterrupt:
>>>

Paste Mode

If you want to paste some code into your terminal window, the auto-indent feature
will mess things up. For example, if you had the following python code:

def foo():
 print('This is a test to show paste mode')
 print('Here is a second line')
foo()

and you try to paste this into the normal REPL, then you will see something like
this:

>>> def foo():
... print('This is a test to show paste mode')
... print('Here is a second line')
... foo()
...
 File "<stdin>", line 3
IndentationError: unexpected indent

If you press Ctrl-E, then you will enter paste mode, which essentially turns off
the auto-indent feature, and changes the prompt from >>> to ===. For example:

>>>
paste mode; Ctrl-C to cancel, Ctrl-D to finish
=== def foo():
=== print('This is a test to show paste mode')
=== print('Here is a second line')
=== foo()
===
This is a test to show paste mode
Here is a second line
>>>

Paste Mode allows blank lines to be pasted. The pasted text is compiled as if
it were a file. Pressing Ctrl-D exits paste mode and initiates the compilation.

Soft Reset

A soft reset will reset the python interpreter, but tries not to reset the
method by which you’re connected to the MicroPython board (USB-serial, or Wifi).

You can perform a soft reset from the REPL by pressing Ctrl-D, or from your python
code by executing:

machine.soft_reset()

For example, if you reset your MicroPython board, and you execute a dir()
command, you’d see something like this:

>>> dir()
['__name__', 'pyb']

Now create some variables and repeat the dir() command:

>>> i = 1
>>> j = 23
>>> x = 'abc'
>>> dir()
['j', 'x', '__name__', 'pyb', 'i']
>>>

Now if you enter Ctrl-D, and repeat the dir() command, you’ll see that your
variables no longer exist:

MPY: sync filesystems
MPY: soft reboot
MicroPython v1.5-51-g6f70283-dirty on 2015-10-30; PYBv1.0 with STM32F405RG
Type "help()" for more information.
>>> dir()
['__name__', 'pyb']
>>>

The special variable _ (underscore)

When you use the REPL, you may perform computations and see the results.
MicroPython stores the results of the previous statement in the variable _ (underscore).
So you can use the underscore to save the result in a variable. For example:

>>> 1 + 2 + 3 + 4 + 5
15
>>> x = _
>>> x
15
>>>

Raw Mode

Raw mode is not something that a person would normally use. It is intended for
programmatic use. It essentially behaves like paste mode with echo turned off.

Raw mode is entered using Ctrl-A. You then send your python code, followed by
a Ctrl-D. The Ctrl-D will be acknowledged by ‘OK’ and then the python code will
be compiled and executed. Any output (or errors) will be sent back. Entering
Ctrl-B will leave raw mode and return the the regular (aka friendly) REPL.

The tools/pyboard.py program uses the raw REPL to execute python files on the
MicroPython board.

Writing interrupt handlers

On suitable hardware MicroPython offers the ability to write interrupt handlers in Python. Interrupt handlers
- also known as interrupt service routines (ISR’s) - are defined as callback functions. These are executed
in response to an event such as a timer trigger or a voltage change on a pin. Such events can occur at any point
in the execution of the program code. This carries significant consequences, some specific to the MicroPython
language. Others are common to all systems capable of responding to real time events. This document covers
the language specific issues first, followed by a brief introduction to real time programming for those new to it.

This introduction uses vague terms like “slow” or “as fast as possible”. This is deliberate, as speeds are
application dependent. Acceptable durations for an ISR are dependent on the rate at which interrupts occur,
the nature of the main program, and the presence of other concurrent events.

Tips and recommended practices

This summarises the points detailed below and lists the principal recommendations for interrupt handler code.

	Keep the code as short and simple as possible.

	Avoid memory allocation: no appending to lists or insertion into dictionaries, no floating point.

	Consider using micropython.schedule to work around the above constraint.

	Where an ISR returns multiple bytes use a pre-allocated bytearray. If multiple integers are to be
shared between an ISR and the main program consider an array (array.array).

	Where data is shared between the main program and an ISR, consider disabling interrupts prior to accessing
the data in the main program and re-enabling them immediately afterwards (see Critical Sections).

	Allocate an emergency exception buffer (see below).

MicroPython Issues

The emergency exception buffer

If an error occurs in an ISR, MicroPython is unable to produce an error report unless a special buffer is created
for the purpose. Debugging is simplified if the following code is included in any program using interrupts.

import micropython
micropython.alloc_emergency_exception_buf(100)

Simplicity

For a variety of reasons it is important to keep ISR code as short and simple as possible. It should do only what
has to be done immediately after the event which caused it: operations which can be deferred should be delegated
to the main program loop. Typically an ISR will deal with the hardware device which caused the interrupt, making
it ready for the next interrupt to occur. It will communicate with the main loop by updating shared data to indicate
that the interrupt has occurred, and it will return. An ISR should return control to the main loop as quickly
as possible. This is not a specific MicroPython issue so is covered in more detail below.

Communication between an ISR and the main program

Normally an ISR needs to communicate with the main program. The simplest means of doing this is via one or more
shared data objects, either declared as global or shared via a class (see below). There are various restrictions
and hazards around doing this, which are covered in more detail below. Integers, bytes and bytearray objects
are commonly used for this purpose along with arrays (from the array module) which can store various data types.

The use of object methods as callbacks

MicroPython supports this powerful technique which enables an ISR to share instance variables with the underlying
code. It also enables a class implementing a device driver to support multiple device instances. The following
example causes two LED’s to flash at different rates.

import pyb, micropython
micropython.alloc_emergency_exception_buf(100)
class Foo(object):
 def __init__(self, timer, led):
 self.led = led
 timer.callback(self.cb)
 def cb(self, tim):
 self.led.toggle()

red = Foo(pyb.Timer(4, freq=1), pyb.LED(1))
green = Foo(pyb.Timer(2, freq=0.8), pyb.LED(2))

In this example the red instance associates timer 4 with LED 1: when a timer 4 interrupt occurs red.cb()
is called causing LED 1 to change state. The green instance operates similarly: a timer 2 interrupt
results in the execution of green.cb() and toggles LED 2. The use of instance methods confers two
benefits. Firstly a single class enables code to be shared between multiple hardware instances. Secondly, as
a bound method the callback function’s first argument is self. This enables the callback to access instance
data and to save state between successive calls. For example, if the class above had a variable self.count
set to zero in the constructor, cb() could increment the counter. The red and green instances would
then maintain independent counts of the number of times each LED had changed state.

Creation of Python objects

ISR’s cannot create instances of Python objects. This is because MicroPython needs to allocate memory for the
object from a store of free memory block called the heap. This is not permitted in an interrupt handler because
heap allocation is not re-entrant. In other words the interrupt might occur when the main program is part way
through performing an allocation - to maintain the integrity of the heap the interpreter disallows memory
allocations in ISR code.

A consequence of this is that ISR’s can’t use floating point arithmetic; this is because floats are Python objects. Similarly
an ISR can’t append an item to a list. In practice it can be hard to determine exactly which code constructs will
attempt to perform memory allocation and provoke an error message: another reason for keeping ISR code short and simple.

One way to avoid this issue is for the ISR to use pre-allocated buffers. For example a class constructor
creates a bytearray instance and a boolean flag. The ISR method assigns data to locations in the buffer and sets
the flag. The memory allocation occurs in the main program code when the object is instantiated rather than in the ISR.

The MicroPython library I/O methods usually provide an option to use a pre-allocated buffer. For
example pyb.i2c.recv() can accept a mutable buffer as its first argument: this enables its use in an ISR.

A means of creating an object without employing a class or globals is as follows:

def set_volume(t, buf=bytearray(3)):
 buf[0] = 0xa5
 buf[1] = t >> 4
 buf[2] = 0x5a
 return buf

The compiler instantiates the default buf argument when the function is
loaded for the first time (usually when the module it’s in is imported).

An instance of object creation occurs when a reference to a bound method is
created. This means that an ISR cannot pass a bound method to a function. One
solution is to create a reference to the bound method in the class constructor
and to pass that reference in the ISR. For example:

class Foo():
 def __init__(self):
 self.bar_ref = self.bar # Allocation occurs here
 self.x = 0.1
 tim = pyb.Timer(4)
 tim.init(freq=2)
 tim.callback(self.cb)

 def bar(self, _):
 self.x *= 1.2
 print(self.x)

 def cb(self, t):
 # Passing self.bar would cause allocation.
 micropython.schedule(self.bar_ref, 0)

Other techniques are to define and instantiate the method in the constructor
or to pass Foo.bar() with the argument self.

Use of Python objects

A further restriction on objects arises because of the way Python works. When an import statement is executed the
Python code is compiled to bytecode, with one line of code typically mapping to multiple bytecodes. When the code
runs the interpreter reads each bytecode and executes it as a series of machine code instructions. Given that an
interrupt can occur at any time between machine code instructions, the original line of Python code may be only
partially executed. Consequently a Python object such as a set, list or dictionary modified in the main loop
may lack internal consistency at the moment the interrupt occurs.

A typical outcome is as follows. On rare occasions the ISR will run at the precise moment in time when the object
is partially updated. When the ISR tries to read the object, a crash results. Because such problems typically occur
on rare, random occasions they can be hard to diagnose. There are ways to circumvent this issue, described in
Critical Sections below.

It is important to be clear about what constitutes the modification of an object. An alteration to a built-in type
such as a dictionary is problematic. Altering the contents of an array or bytearray is not. This is because bytes
or words are written as a single machine code instruction which is not interruptible: in the parlance of real time
programming the write is atomic. A user defined object might instantiate an integer, array or bytearray. It is valid
for both the main loop and the ISR to alter the contents of these.

MicroPython supports integers of arbitrary precision. Values between 2**30 -1 and -2**30 will be stored in
a single machine word. Larger values are stored as Python objects. Consequently changes to long integers cannot
be considered atomic. The use of long integers in ISR’s is unsafe because memory allocation may be
attempted as the variable’s value changes.

Overcoming the float limitation

In general it is best to avoid using floats in ISR code: hardware devices normally handle integers and conversion
to floats is normally done in the main loop. However there are a few DSP algorithms which require floating point.
On platforms with hardware floating point (such as the Pyboard) the inline ARM Thumb assembler can be used to work
round this limitation. This is because the processor stores float values in a machine word; values can be shared
between the ISR and main program code via an array of floats.

Using micropython.schedule

This function enables an ISR to schedule a callback for execution “very soon”. The callback is queued for
execution which will take place at a time when the heap is not locked. Hence it can create Python objects
and use floats. The callback is also guaranteed to run at a time when the main program has completed any
update of Python objects, so the callback will not encounter partially updated objects.

Typical usage is to handle sensor hardware. The ISR acquires data from the hardware and enables it to
issue a further interrupt. It then schedules a callback to process the data.

Scheduled callbacks should comply with the principles of interrupt handler design outlined below. This is to
avoid problems resulting from I/O activity and the modification of shared data which can arise in any code
which pre-empts the main program loop.

Execution time needs to be considered in relation to the frequency with which interrupts can occur. If an
interrupt occurs while the previous callback is executing, a further instance of the callback will be queued
for execution; this will run after the current instance has completed. A sustained high interrupt repetition
rate therefore carries a risk of unconstrained queue growth and eventual failure with a RuntimeError.

If the callback to be passed to schedule() is a bound method, consider the
note in “Creation of Python objects”.

Exceptions

If an ISR raises an exception it will not propagate to the main loop. The interrupt will be disabled unless the
exception is handled by the ISR code.

General Issues

This is merely a brief introduction to the subject of real time programming. Beginners should note
that design errors in real time programs can lead to faults which are particularly hard to diagnose. This is because
they can occur rarely and at intervals which are essentially random. It is crucial to get the initial design right and
to anticipate issues before they arise. Both interrupt handlers and the main program need to be designed
with an appreciation of the following issues.

Interrupt Handler Design

As mentioned above, ISR’s should be designed to be as simple as possible. They should always return in a short,
predictable period of time. This is important because when the ISR is running, the main loop is not: inevitably
the main loop experiences pauses in its execution at random points in the code. Such pauses can be a source of hard
to diagnose bugs particularly if their duration is long or variable. In order to understand the implications of
ISR run time, a basic grasp of interrupt priorities is required.

Interrupts are organised according to a priority scheme. ISR code may itself be interrupted by a higher priority
interrupt. This has implications if the two interrupts share data (see Critical Sections below). If such an interrupt
occurs it interposes a delay into the ISR code. If a lower priority interrupt occurs while the ISR is running, it
will be delayed until the ISR is complete: if the delay is too long, the lower priority interrupt may fail. A
further issue with slow ISR’s is the case where a second interrupt of the same type occurs during its execution.
The second interrupt will be handled on termination of the first. However if the rate of incoming interrupts
consistently exceeds the capacity of the ISR to service them the outcome will not be a happy one.

Consequently looping constructs should be avoided or minimised. I/O to devices other than to the interrupting device
should normally be avoided: I/O such as disk access, print statements and UART access is relatively slow, and
its duration may vary. A further issue here is that filesystem functions are not reentrant: using filesystem I/O
in an ISR and the main program would be hazardous. Crucially ISR code should not wait on an event. I/O is acceptable
if the code can be guaranteed to return in a predictable period, for example toggling a pin or LED. Accessing the
interrupting device via I2C or SPI may be necessary but the time taken for such accesses should be calculated or
measured and its impact on the application assessed.

There is usually a need to share data between the ISR and the main loop. This may be done either through global
variables or via class or instance variables. Variables are typically integer or boolean types, or integer or byte
arrays (a pre-allocated integer array offers faster access than a list). Where multiple values are modified by
the ISR it is necessary to consider the case where the interrupt occurs at a time when the main program has
accessed some, but not all, of the values. This can lead to inconsistencies.

Consider the following design. An ISR stores incoming data in a bytearray, then adds the number of bytes
received to an integer representing total bytes ready for processing. The main program reads the number of bytes,
processes the bytes, then clears down the number of bytes ready. This will work until an interrupt occurs just
after the main program has read the number of bytes. The ISR puts the added data into the buffer and updates
the number received, but the main program has already read the number, so processes the data originally received.
The newly arrived bytes are lost.

There are various ways of avoiding this hazard, the simplest being to use a circular buffer. If it is not possible
to use a structure with inherent thread safety other ways are described below.

Reentrancy

A potential hazard may occur if a function or method is shared between the main program and one or more ISR’s or
between multiple ISR’s. The issue here is that the function may itself be interrupted and a further instance of
that function run. If this is to occur, the function must be designed to be reentrant. How this is done is an
advanced topic beyond the scope of this tutorial.

Critical Sections

An example of a critical section of code is one which accesses more than one variable which can be affected by an ISR. If
the interrupt happens to occur between accesses to the individual variables, their values will be inconsistent. This is
an instance of a hazard known as a race condition: the ISR and the main program loop race to alter the variables. To
avoid inconsistency a means must be employed to ensure that the ISR does not alter the values for the duration of
the critical section. One way to achieve this is to issue pyb.disable_irq() before the start of the section, and
pyb.enable_irq() at the end. Here is an example of this approach:

import pyb, micropython, array
micropython.alloc_emergency_exception_buf(100)

class BoundsException(Exception):
 pass

ARRAYSIZE = const(20)
index = 0
data = array.array('i', 0 for x in range(ARRAYSIZE))

def callback1(t):
 global data, index
 for x in range(5):
 data[index] = pyb.rng() # simulate input
 index += 1
 if index >= ARRAYSIZE:
 raise BoundsException('Array bounds exceeded')

tim4 = pyb.Timer(4, freq=100, callback=callback1)

for loop in range(1000):
 if index > 0:
 irq_state = pyb.disable_irq() # Start of critical section
 for x in range(index):
 print(data[x])
 index = 0
 pyb.enable_irq(irq_state) # End of critical section
 print('loop {}'.format(loop))
 pyb.delay(1)

tim4.callback(None)

A critical section can comprise a single line of code and a single variable. Consider the following code fragment.

count = 0
def cb(): # An interrupt callback
 count +=1
def main():
 # Code to set up the interrupt callback omitted
 while True:
 count += 1

This example illustrates a subtle source of bugs. The line count += 1 in the main loop carries a specific race
condition hazard known as a read-modify-write. This is a classic cause of bugs in real time systems. In the main loop
MicroPython reads the value of t.counter, adds 1 to it, and writes it back. On rare occasions the interrupt occurs
after the read and before the write. The interrupt modifies t.counter but its change is overwritten by the main
loop when the ISR returns. In a real system this could lead to rare, unpredictable failures.

As mentioned above, care should be taken if an instance of a Python built in type is modified in the main code and
that instance is accessed in an ISR. The code performing the modification should be regarded as a critical
section to ensure that the instance is in a valid state when the ISR runs.

Particular care needs to be taken if a dataset is shared between different ISR’s. The hazard here is that the higher
priority interrupt may occur when the lower priority one has partially updated the shared data. Dealing with this
situation is an advanced topic beyond the scope of this introduction other than to note that mutex objects described
below can sometimes be used.

Disabling interrupts for the duration of a critical section is the usual and simplest way to proceed, but it disables
all interrupts rather than merely the one with the potential to cause problems. It is generally undesirable to disable
an interrupt for long. In the case of timer interrupts it introduces variability to the time when a callback occurs.
In the case of device interrupts, it can lead to the device being serviced too late with possible loss of data or
overrun errors in the device hardware. Like ISR’s, a critical section in the main code should have a short, predictable
duration.

An approach to dealing with critical sections which radically reduces the time for which interrupts are disabled is to
use an object termed a mutex (name derived from the notion of mutual exclusion). The main program locks the mutex
before running the critical section and unlocks it at the end. The ISR tests whether the mutex is locked. If it is,
it avoids the critical section and returns. The design challenge is defining what the ISR should do in the event
that access to the critical variables is denied. A simple example of a mutex may be found
here [https://github.com/peterhinch/micropython-samples.git]. Note that the mutex code does disable interrupts,
but only for the duration of eight machine instructions: the benefit of this approach is that other interrupts are
virtually unaffected.

Interrupts and the REPL

Interrupt handlers, such as those associated with timers, can continue to run
after a program terminates. This may produce unexpected results where you might
have expected the object raising the callback to have gone out of scope. For
example on the Pyboard:

def bar():
 foo = pyb.Timer(2, freq=4, callback=lambda t: print('.', end=''))

bar()

This continues to run until the timer is explicitly disabled or the board is
reset with ctrl D.

Maximising MicroPython Speed

Contents

	Maximising MicroPython Speed

	Designing for speed

	Algorithms

	RAM Allocation

	Buffers

	Floating Point

	Arrays

	Identifying the slowest section of code

	MicroPython code improvements

	The const() declaration

	Caching object references

	Controlling garbage collection

	The Native code emitter

	The Viper code emitter

	Accessing hardware directly

This tutorial describes ways of improving the performance of MicroPython code.
Optimisations involving other languages are covered elsewhere, namely the use
of modules written in C and the MicroPython inline assembler.

The process of developing high performance code comprises the following stages
which should be performed in the order listed.

	Design for speed.

	Code and debug.

Optimisation steps:

	Identify the slowest section of code.

	Improve the efficiency of the Python code.

	Use the native code emitter.

	Use the viper code emitter.

	Use hardware-specific optimisations.

Designing for speed

Performance issues should be considered at the outset. This involves taking a view
on the sections of code which are most performance critical and devoting particular
attention to their design. The process of optimisation begins when the code has
been tested: if the design is correct at the outset optimisation will be
straightforward and may actually be unnecessary.

Algorithms

The most important aspect of designing any routine for performance is ensuring that
the best algorithm is employed. This is a topic for textbooks rather than for a
MicroPython guide but spectacular performance gains can sometimes be achieved
by adopting algorithms known for their efficiency.

RAM Allocation

To design efficient MicroPython code it is necessary to have an understanding of the
way the interpreter allocates RAM. When an object is created or grows in size
(for example where an item is appended to a list) the necessary RAM is allocated
from a block known as the heap. This takes a significant amount of time;
further it will on occasion trigger a process known as garbage collection which
can take several milliseconds.

Consequently the performance of a function or method can be improved if an object is created
once only and not permitted to grow in size. This implies that the object persists
for the duration of its use: typically it will be instantiated in a class constructor
and used in various methods.

This is covered in further detail Controlling garbage collection below.

Buffers

An example of the above is the common case where a buffer is required, such as one
used for communication with a device. A typical driver will create the buffer in the
constructor and use it in its I/O methods which will be called repeatedly.

The MicroPython libraries typically provide support for pre-allocated buffers. For
example, objects which support stream interface (e.g., file or UART) provide read()
method which allocates new buffer for read data, but also a readinto() method
to read data into an existing buffer.

Floating Point

Some MicroPython ports allocate floating point numbers on heap. Some other ports
may lack dedicated floating-point coprocessor, and perform arithmetic operations
on them in “software” at considerably lower speed than on integers. Where
performance is important, use integer operations and restrict the use of floating
point to sections of the code where performance is not paramount. For example,
capture ADC readings as integers values to an array in one quick go, and only then
convert them to floating-point numbers for signal processing.

Arrays

Consider the use of the various types of array classes as an alternative to lists.
The array module supports various element types with 8-bit elements supported
by Python’s built in bytes and bytearray classes. These data structures all store
elements in contiguous memory locations. Once again to avoid memory allocation in critical
code these should be pre-allocated and passed as arguments or as bound objects.

When passing slices of objects such as bytearray instances, Python creates
a copy which involves allocation of the size proportional to the size of slice.
This can be alleviated using a memoryview object. memoryview itself
is allocated on heap, but is a small, fixed-size object, regardless of the size
of slice it points too.

ba = bytearray(10000) # big array
func(ba[30:2000]) # a copy is passed, ~2K new allocation
mv = memoryview(ba) # small object is allocated
func(mv[30:2000]) # a pointer to memory is passed

A memoryview can only be applied to objects supporting the buffer protocol - this
includes arrays but not lists. Small caveat is that while memoryview object is live,
it also keeps alive the original buffer object. So, a memoryview isn’t a universal
panacea. For instance, in the example above, if you are done with 10K buffer and
just need those bytes 30:2000 from it, it may be better to make a slice, and let
the 10K buffer go (be ready for garbage collection), instead of making a
long-living memoryview and keeping 10K blocked for GC.

Nonetheless, memoryview is indispensable for advanced preallocated buffer
management. readinto() method discussed above puts data at the beginning
of buffer and fills in entire buffer. What if you need to put data in the
middle of existing buffer? Just create a memoryview into the needed section
of buffer and pass it to readinto().

Identifying the slowest section of code

This is a process known as profiling and is covered in textbooks and
(for standard Python) supported by various software tools. For the type of
smaller embedded application likely to be running on MicroPython platforms
the slowest function or method can usually be established by judicious use
of the timing ticks group of functions documented in utime.
Code execution time can be measured in ms, us, or CPU cycles.

The following enables any function or method to be timed by adding an
@timed_function decorator:

def timed_function(f, *args, **kwargs):
 myname = str(f).split(' ')[1]
 def new_func(*args, **kwargs):
 t = utime.ticks_us()
 result = f(*args, **kwargs)
 delta = utime.ticks_diff(utime.ticks_us(), t)
 print('Function {} Time = {:6.3f}ms'.format(myname, delta/1000))
 return result
 return new_func

MicroPython code improvements

The const() declaration

MicroPython provides a const() declaration. This works in a similar way
to #define in C in that when the code is compiled to bytecode the compiler
substitutes the numeric value for the identifier. This avoids a dictionary
lookup at runtime. The argument to const() may be anything which, at
compile time, evaluates to an integer e.g. 0x100 or 1 << 8.

Caching object references

Where a function or method repeatedly accesses objects performance is improved
by caching the object in a local variable:

class foo(object):
 def __init__(self):
 ba = bytearray(100)
 def bar(self, obj_display):
 ba_ref = self.ba
 fb = obj_display.framebuffer
 # iterative code using these two objects

This avoids the need repeatedly to look up self.ba and obj_display.framebuffer
in the body of the method bar().

Controlling garbage collection

When memory allocation is required, MicroPython attempts to locate an adequately
sized block on the heap. This may fail, usually because the heap is cluttered
with objects which are no longer referenced by code. If a failure occurs, the
process known as garbage collection reclaims the memory used by these redundant
objects and the allocation is then tried again - a process which can take several
milliseconds.

There may be benefits in pre-empting this by periodically issuing gc.collect().
Firstly doing a collection before it is actually required is quicker - typically on the
order of 1ms if done frequently. Secondly you can determine the point in code
where this time is used rather than have a longer delay occur at random points,
possibly in a speed critical section. Finally performing collections regularly
can reduce fragmentation in the heap. Severe fragmentation can lead to
non-recoverable allocation failures.

The Native code emitter

This causes the MicroPython compiler to emit native CPU opcodes rather than
bytecode. It covers the bulk of the MicroPython functionality, so most functions will require
no adaptation (but see below). It is invoked by means of a function decorator:

@micropython.native
def foo(self, arg):
 buf = self.linebuf # Cached object
 # code

There are certain limitations in the current implementation of the native code emitter.

	Context managers are not supported (the with statement).

	Generators are not supported.

	If raise is used an argument must be supplied.

The trade-off for the improved performance (roughly twices as fast as bytecode) is an
increase in compiled code size.

The Viper code emitter

The optimisations discussed above involve standards-compliant Python code. The
Viper code emitter is not fully compliant. It supports special Viper native data types
in pursuit of performance. Integer processing is non-compliant because it uses machine
words: arithmetic on 32 bit hardware is performed modulo 2**32.

Like the Native emitter Viper produces machine instructions but further optimisations
are performed, substantially increasing performance especially for integer arithmetic and
bit manipulations. It is invoked using a decorator:

@micropython.viper
def foo(self, arg: int) -> int:
 # code

As the above fragment illustrates it is beneficial to use Python type hints to assist the Viper optimiser.
Type hints provide information on the data types of arguments and of the return value; these
are a standard Python language feature formally defined here PEP0484 [https://www.python.org/dev/peps/pep-0484/].
Viper supports its own set of types namely int, uint (unsigned integer), ptr, ptr8,
ptr16 and ptr32. The ptrX types are discussed below. Currently the uint type serves
a single purpose: as a type hint for a function return value. If such a function returns 0xffffffff
Python will interpret the result as 2**32 -1 rather than as -1.

In addition to the restrictions imposed by the native emitter the following constraints apply:

	Functions may have up to four arguments.

	Default argument values are not permitted.

	Floating point may be used but is not optimised.

Viper provides pointer types to assist the optimiser. These comprise

	ptr Pointer to an object.

	ptr8 Points to a byte.

	ptr16 Points to a 16 bit half-word.

	ptr32 Points to a 32 bit machine word.

The concept of a pointer may be unfamiliar to Python programmers. It has similarities
to a Python memoryview object in that it provides direct access to data stored in memory.
Items are accessed using subscript notation, but slices are not supported: a pointer can return
a single item only. Its purpose is to provide fast random access to data stored in contiguous
memory locations - such as data stored in objects which support the buffer protocol, and
memory-mapped peripheral registers in a microcontroller. It should be noted that programming
using pointers is hazardous: bounds checking is not performed and the compiler does nothing to
prevent buffer overrun errors.

Typical usage is to cache variables:

@micropython.viper
def foo(self, arg: int) -> int:
 buf = ptr8(self.linebuf) # self.linebuf is a bytearray or bytes object
 for x in range(20, 30):
 bar = buf[x] # Access a data item through the pointer
 # code omitted

In this instance the compiler “knows” that buf is the address of an array of bytes;
it can emit code to rapidly compute the address of buf[x] at runtime. Where casts are
used to convert objects to Viper native types these should be performed at the start of
the function rather than in critical timing loops as the cast operation can take several
microseconds. The rules for casting are as follows:

	Casting operators are currently: int, bool, uint, ptr, ptr8, ptr16 and ptr32.

	The result of a cast will be a native Viper variable.

	Arguments to a cast can be a Python object or a native Viper variable.

	If argument is a native Viper variable, then cast is a no-op (i.e. costs nothing at runtime)
that just changes the type (e.g. from uint to ptr8) so that you can then store/load
using this pointer.

	If the argument is a Python object and the cast is int or uint, then the Python object
must be of integral type and the value of that integral object is returned.

	The argument to a bool cast must be integral type (boolean or integer); when used as a return
type the viper function will return True or False objects.

	If the argument is a Python object and the cast is ptr, ptr, ptr16 or ptr32,
then the Python object must either have the buffer protocol with read-write capabilities
(in which case a pointer to the start of the buffer is returned) or it must be of integral
type (in which case the value of that integral object is returned).

The following example illustrates the use of a ptr16 cast to toggle pin X1 n times:

BIT0 = const(1)
@micropython.viper
def toggle_n(n: int):
 odr = ptr16(stm.GPIOA + stm.GPIO_ODR)
 for _ in range(n):
 odr[0] ^= BIT0

A detailed technical description of the three code emitters may be found
on Kickstarter here Note 1 [https://www.kickstarter.com/projects/214379695/micro-python-python-for-microcontrollers/posts/664832]
and here Note 2 [https://www.kickstarter.com/projects/214379695/micro-python-python-for-microcontrollers/posts/665145]

Accessing hardware directly

Note

Code examples in this section are given for the Pyboard. The techniques
described however may be applied to other MicroPython ports too.

This comes into the category of more advanced programming and involves some knowledge
of the target MCU. Consider the example of toggling an output pin on the Pyboard. The
standard approach would be to write

mypin.value(mypin.value() ^ 1) # mypin was instantiated as an output pin

This involves the overhead of two calls to the Pin instance’s value()
method. This overhead can be eliminated by performing a read/write to the relevant bit
of the chip’s GPIO port output data register (odr). To facilitate this the stm
module provides a set of constants providing the addresses of the relevant registers.
A fast toggle of pin P4 (CPU pin A14) - corresponding to the green LED -
can be performed as follows:

import machine
import stm

BIT14 = const(1 << 14)
machine.mem16[stm.GPIOA + stm.GPIO_ODR] ^= BIT14

MicroPython on Microcontrollers

MicroPython is designed to be capable of running on microcontrollers. These
have hardware limitations which may be unfamiliar to programmers more familiar
with conventional computers. In particular the amount of RAM and nonvolatile
“disk” (flash memory) storage is limited. This tutorial offers ways to make
the most of the limited resources. Because MicroPython runs on controllers
based on a variety of architectures, the methods presented are generic: in some
cases it will be necessary to obtain detailed information from platform specific
documentation.

Flash Memory

On the Pyboard the simple way to address the limited capacity is to fit a micro
SD card. In some cases this is impractical, either because the device does not
have an SD card slot or for reasons of cost or power consumption; hence the
on-chip flash must be used. The firmware including the MicroPython subsystem is
stored in the onboard flash. The remaining capacity is available for use. For
reasons connected with the physical architecture of the flash memory part of
this capacity may be inaccessible as a filesystem. In such cases this space may
be employed by incorporating user modules into a firmware build which is then
flashed to the device.

There are two ways to achieve this: frozen modules and frozen bytecode. Frozen
modules store the Python source with the firmware. Frozen bytecode uses the
cross compiler to convert the source to bytecode which is then stored with the
firmware. In either case the module may be accessed with an import statement:

import mymodule

The procedure for producing frozen modules and bytecode is platform dependent;
instructions for building the firmware can be found in the README files in the
relevant part of the source tree.

In general terms the steps are as follows:

	Clone the MicroPython repository [https://github.com/micropython/micropython].

	Acquire the (platform specific) toolchain to build the firmware.

	Build the cross compiler.

	Place the modules to be frozen in a specified directory (dependent on whether
the module is to be frozen as source or as bytecode).

	Build the firmware. A specific command may be required to build frozen
code of either type - see the platform documentation.

	Flash the firmware to the device.

RAM

When reducing RAM usage there are two phases to consider: compilation and
execution. In addition to memory consumption, there is also an issue known as
heap fragmentation. In general terms it is best to minimise the repeated
creation and destruction of objects. The reason for this is covered in the
section covering the heap.

Compilation Phase

When a module is imported, MicroPython compiles the code to bytecode which is
then executed by the MicroPython virtual machine (VM). The bytecode is stored
in RAM. The compiler itself requires RAM, but this becomes available for use
when the compilation has completed.

If a number of modules have already been imported the situation can arise where
there is insufficient RAM to run the compiler. In this case the import
statement will produce a memory exception.

If a module instantiates global objects on import it will consume RAM at the
time of import, which is then unavailable for the compiler to use on subsequent
imports. In general it is best to avoid code which runs on import; a better
approach is to have initialisation code which is run by the application after
all modules have been imported. This maximises the RAM available to the
compiler.

If RAM is still insufficient to compile all modules one solution is to
precompile modules. MicroPython has a cross compiler capable of compiling Python
modules to bytecode (see the README in the mpy-cross directory). The resulting
bytecode file has a .mpy extension; it may be copied to the filesystem and
imported in the usual way. Alternatively some or all modules may be implemented
as frozen bytecode: on most platforms this saves even more RAM as the bytecode
is run directly from flash rather than being stored in RAM.

Execution Phase

There are a number of coding techniques for reducing RAM usage.

Constants

MicroPython provides a const keyword which may be used as follows:

from micropython import const
ROWS = const(33)
_COLS = const(0x10)
a = ROWS
b = _COLS

In both instances where the constant is assigned to a variable the compiler
will avoid coding a lookup to the name of the constant by substituting its
literal value. This saves bytecode and hence RAM. However the ROWS value
will occupy at least two machine words, one each for the key and value in the
globals dictionary. The presence in the dictionary is necessary because another
module might import or use it. This RAM can be saved by prepending the name
with an underscore as in _COLS: this symbol is not visible outside the
module so will not occupy RAM.

The argument to const() may be anything which, at compile time, evaluates
to an integer e.g. 0x100 or 1 << 8. It can even include other const
symbols that have already been defined, e.g. 1 << BIT.

Constant data structures

Where there is a substantial volume of constant data and the platform supports
execution from Flash, RAM may be saved as follows. The data should be located in
Python modules and frozen as bytecode. The data must be defined as bytes
objects. The compiler ‘knows’ that bytes objects are immutable and ensures
that the objects remain in flash memory rather than being copied to RAM. The
ustruct module can assist in converting between bytes types and other
Python built-in types.

When considering the implications of frozen bytecode, note that in Python
strings, floats, bytes, integers and complex numbers are immutable. Accordingly
these will be frozen into flash. Thus, in the line

mystring = "The quick brown fox"

the actual string “The quick brown fox” will reside in flash. At runtime a
reference to the string is assigned to the variable mystring. The reference
occupies a single machine word. In principle a long integer could be used to
store constant data:

bar = 0xDEADBEEF0000DEADBEEF

As in the string example, at runtime a reference to the arbitrarily large
integer is assigned to the variable bar. That reference occupies a
single machine word.

It might be expected that tuples of integers could be employed for the purpose
of storing constant data with minimal RAM use. With the current compiler this
is ineffective (the code works, but RAM is not saved).

foo = (1, 2, 3, 4, 5, 6, 100000)

At runtime the tuple will be located in RAM. This may be subject to future
improvement.

Needless object creation

There are a number of situations where objects may unwittingly be created and
destroyed. This can reduce the usability of RAM through fragmentation. The
following sections discuss instances of this.

String concatenation

Consider the following code fragments which aim to produce constant strings:

var = "foo" + "bar"
var1 = "foo" "bar"
var2 = """\
foo\
bar"""

Each produces the same outcome, however the first needlessly creates two string
objects at runtime, allocates more RAM for concatenation before producing the
third. The others perform the concatenation at compile time which is more
efficient, reducing fragmentation.

Where strings must be dynamically created before being fed to a stream such as
a file it will save RAM if this is done in a piecemeal fashion. Rather than
creating a large string object, create a substring and feed it to the stream
before dealing with the next.

The best way to create dynamic strings is by means of the string format()
method:

var = "Temperature {:5.2f} Pressure {:06d}\n".format(temp, press)

Buffers

When accessing devices such as instances of UART, I2C and SPI interfaces, using
pre-allocated buffers avoids the creation of needless objects. Consider these
two loops:

while True:
 var = spi.read(100)
 # process data

buf = bytearray(100)
while True:
 spi.readinto(buf)
 # process data in buf

The first creates a buffer on each pass whereas the second re-uses a pre-allocated
buffer; this is both faster and more efficient in terms of memory fragmentation.

Bytes are smaller than ints

On most platforms an integer consumes four bytes. Consider the two calls to the
function foo():

def foo(bar):
 for x in bar:
 print(x)
foo((1, 2, 0xff))
foo(b'\1\2\xff')

In the first call a tuple of integers is created in RAM. The second efficiently
creates a bytes object consuming the minimum amount of RAM. If the module
were frozen as bytecode, the bytes object would reside in flash.

Strings Versus Bytes

Python3 introduced Unicode support. This introduced a distinction between a
string and an array of bytes. MicroPython ensures that Unicode strings take no
additional space so long as all characters in the string are ASCII (i.e. have
a value < 126). If values in the full 8-bit range are required bytes and
bytearray objects can be used to ensure that no additional space will be
required. Note that most string methods (e.g. str.strip() [https://docs.python.org/3.5/library/stdtypes.html#str.strip]) apply also to bytes
instances so the process of eliminating Unicode can be painless.

s = 'the quick brown fox' # A string instance
b = b'the quick brown fox' # A bytes instance

Where it is necessary to convert between strings and bytes the str.encode() [https://docs.python.org/3.5/library/stdtypes.html#str.encode]
and the bytes.decode() [https://docs.python.org/3.5/library/stdtypes.html#bytes.decode] methods can be used. Note that both strings and bytes
are immutable. Any operation which takes as input such an object and produces
another implies at least one RAM allocation to produce the result. In the
second line below a new bytes object is allocated. This would also occur if foo
were a string.

foo = b' empty whitespace'
foo = foo.lstrip()

Runtime compiler execution

The Python funcitons eval and exec invoke the compiler at runtime, which
requires significant amounts of RAM. Note that the pickle library from
micropython-lib employs exec. It may be more RAM efficient to use the
ujson library for object serialisation.

Storing strings in flash

Python strings are immutable hence have the potential to be stored in read only
memory. The compiler can place in flash strings defined in Python code. As with
frozen modules it is necessary to have a copy of the source tree on the PC and
the toolchain to build the firmware. The procedure will work even if the
modules have not been fully debugged, so long as they can be imported and run.

After importing the modules, execute:

micropython.qstr_info(1)

Then copy and paste all the Q(xxx) lines into a text editor. Check for and
remove lines which are obviously invalid. Open the file qstrdefsport.h which
will be found in ports/stm32 (or the equivalent directory for the architecture in
use). Copy and paste the corrected lines at the end of the file. Save the file,
rebuild and flash the firmware. The outcome can be checked by importing the
modules and again issuing:

micropython.qstr_info(1)

The Q(xxx) lines should be gone.

The Heap

When a running program instantiates an object the necessary RAM is allocated
from a fixed size pool known as the heap. When the object goes out of scope (in
other words becomes inaccessible to code) the redundant object is known as
“garbage”. A process known as “garbage collection” (GC) reclaims that memory,
returning it to the free heap. This process runs automatically, however it can
be invoked directly by issuing gc.collect().

The discourse on this is somewhat involved. For a ‘quick fix’ issue the
following periodically:

gc.collect()
gc.threshold(gc.mem_free() // 4 + gc.mem_alloc())

Fragmentation

Say a program creates an object foo, then an object bar. Subsequently
foo goes out of scope but bar remains. The RAM used by foo will be
reclaimed by GC. However if bar was allocated to a higher address, the
RAM reclaimed from foo will only be of use for objects no bigger than
foo. In a complex or long running program the heap can become fragmented:
despite there being a substantial amount of RAM available, there is insufficient
contiguous space to allocate a particular object, and the program fails with a
memory error.

The techniques outlined above aim to minimise this. Where large permanent buffers
or other objects are required it is best to instantiate these early in the
process of program execution before fragmentation can occur. Further improvements
may be made by monitoring the state of the heap and by controlling GC; these are
outlined below.

Reporting

A number of library functions are available to report on memory allocation and
to control GC. These are to be found in the gc and micropython modules.
The following example may be pasted at the REPL (ctrl e to enter paste mode,
ctrl d to run it).

import gc
import micropython
gc.collect()
micropython.mem_info()
print('-----------------------------')
print('Initial free: {} allocated: {}'.format(gc.mem_free(), gc.mem_alloc()))
def func():
 a = bytearray(10000)
gc.collect()
print('Func definition: {} allocated: {}'.format(gc.mem_free(), gc.mem_alloc()))
func()
print('Func run free: {} allocated: {}'.format(gc.mem_free(), gc.mem_alloc()))
gc.collect()
print('Garbage collect free: {} allocated: {}'.format(gc.mem_free(), gc.mem_alloc()))
print('-----------------------------')
micropython.mem_info(1)

Methods employed above:

	gc.collect() Force a garbage collection. See footnote.

	micropython.mem_info() Print a summary of RAM utilisation.

	gc.mem_free() Return the free heap size in bytes.

	gc.mem_alloc() Return the number of bytes currently allocated.

	micropython.mem_info(1) Print a table of heap utilisation (detailed below).

The numbers produced are dependent on the platform, but it can be seen that
declaring the function uses a small amount of RAM in the form of bytecode
emitted by the compiler (the RAM used by the compiler has been reclaimed).
Running the function uses over 10KiB, but on return a is garbage because it
is out of scope and cannot be referenced. The final gc.collect() recovers
that memory.

The final output produced by micropython.mem_info(1) will vary in detail but
may be interpreted as follows:

	Symbol

	Meaning

	.

	free block

	h

	head block

	=

	tail block

	m

	marked head block

	T

	tuple

	L

	list

	D

	dict

	F

	float

	B

	byte code

	M

	module

Each letter represents a single block of memory, a block being 16 bytes. So each
line of the heap dump represents 0x400 bytes or 1KiB of RAM.

Control of Garbage Collection

A GC can be demanded at any time by issuing gc.collect(). It is advantageous
to do this at intervals, firstly to pre-empt fragmentation and secondly for
performance. A GC can take several milliseconds but is quicker when there is
little work to do (about 1ms on the Pyboard). An explicit call can minimise that
delay while ensuring it occurs at points in the program when it is acceptable.

Automatic GC is provoked under the following circumstances. When an attempt at
allocation fails, a GC is performed and the allocation re-tried. Only if this
fails is an exception raised. Secondly an automatic GC will be triggered if the
amount of free RAM falls below a threshold. This threshold can be adapted as
execution progresses:

gc.collect()
gc.threshold(gc.mem_free() // 4 + gc.mem_alloc())

This will provoke a GC when more than 25% of the currently free heap becomes
occupied.

In general modules should instantiate data objects at runtime using constructors
or other initialisation functions. The reason is that if this occurs on
initialisation the compiler may be starved of RAM when subsequent modules are
imported. If modules do instantiate data on import then gc.collect() issued
after the import will ameliorate the problem.

String Operations

MicroPython handles strings in an efficient manner and understanding this can
help in designing applications to run on microcontrollers. When a module
is compiled, strings which occur multiple times are stored once only, a process
known as string interning. In MicroPython an interned string is known as a qstr.
In a module imported normally that single instance will be located in RAM, but
as described above, in modules frozen as bytecode it will be located in flash.

String comparisons are also performed efficiently using hashing rather than
character by character. The penalty for using strings rather than integers may
hence be small both in terms of performance and RAM usage - a fact which may
come as a surprise to C programmers.

Postscript

MicroPython passes, returns and (by default) copies objects by reference. A
reference occupies a single machine word so these processes are efficient in
RAM usage and speed.

Where variables are required whose size is neither a byte nor a machine word
there are standard libraries which can assist in storing these efficiently and
in performing conversions. See the array, ustruct and uctypes
modules.

Footnote: gc.collect() return value

On Unix and Windows platforms the gc.collect() method returns an integer
which signifies the number of distinct memory regions that were reclaimed in the
collection (more precisely, the number of heads that were turned into frees). For
efficiency reasons bare metal ports do not return this value.

Distribution packages, package management, and deploying applications

Just as the “big” Python, MicroPython supports creation of “third party”
packages, distributing them, and easily installing them in each user’s
environment. This chapter discusses how these actions are achieved.
Some familiarity with Python packaging is recommended.

Overview

Steps below represent a high-level workflow when creating and consuming
packages:

	Python modules and packages are turned into distribution package
archives, and published at the Python Package Index (PyPI).

	upip package manager can be used to install a distribution package
on a MicroPython port with networking capabilities (for example,
on the Unix port).

	For ports without networking capabilities, an “installation image”
can be prepared on the Unix port, and transferred to a device by
suitable means.

	For low-memory ports, the installation image can be frozen as the
bytecode into MicroPython executable, thus minimizing the memory
storage overheads.

The sections below describe this process in details.

Distribution packages

Python modules and packages can be packaged into archives suitable for
transfer between systems, storing at the well-known location (PyPI),
and downloading on demand for deployment. These archives are known as
distribution packages (to differentiate them from Python packages
(means to organize Python source code)).

The MicroPython distribution package format is a well-known tar.gz
format, with some adaptations however. The Gzip compressor, used as
an external wrapper for TAR archives, by default uses 32KB dictionary
size, which means that to uncompress a compressed stream, 32KB of
contguous memory needs to be allocated. This requirement may be not
satisfiable on low-memory devices, which may have total memory available
less than that amount, and even if not, a contiguous block like that
may be hard to allocate due to memory fragmentation. To accommodate
these constraints, MicroPython distribution packages use Gzip compression
with the dictionary size of 4K, which should be a suitable compromise
with still achieving some compression while being able to uncompressed
even by the smallest devices.

Besides the small compression dictionary size, MicroPython distribution
packages also have other optimizations, like removing any files from
the archive which aren’t used by the installation process. In particular,
upip package manager doesn’t execute setup.py during installation
(see below), and thus that file is not included in the archive.

At the same time, these optimizations make MicroPython distribution
packages not compatible with CPython’s package manager, pip.
This isn’t considered a big problem, because:

	Packages can be installed with upip, and then can be used with
CPython (if they are compatible with it).

	In the other direction, majority of CPython packages would be
incompatible with MicroPython by various reasons, first of all,
the reliance on features not implemented by MicroPython.

Summing up, the MicroPython distribution package archives are highly
optimized for MicroPython’s target environments, which are highly
resource constrained devices.

upip package manager

MicroPython distribution packages are intended to be installed using
the upip package manager. upip is a Python application which is
usually distributed (as frozen bytecode) with network-enabled
MicroPython ports. At the very least,
upip is available in the MicroPython Unix port.

On any MicroPython port providing upip, it can be accessed as
following:

import upip
upip.help()
upip.install(package_or_package_list, [path])

Where package_or_package_list is the name of a distribution
package to install, or a list of such names to install multiple
packages. Optional path parameter specifies filesystem
location to install under and defaults to the standard library
location (see below).

An example of installing a specific package and then using it:

>>> import upip
>>> upip.install("micropython-pystone_lowmem")
[...]
>>> import pystone_lowmem
>>> pystone_lowmem.main()

Note that the name of Python package and the name of distribution
package for it in general don’t have to match, and oftentimes they
don’t. This is because PyPI provides a central package repository
for all different Python implementations and versions, and thus
distribution package names may need to be namespaced for a particular
implementation. For example, all packages from micropython-lib
follow this naming convention: for a Python module or package named
foo, the distribution package name is micropython-foo.

For the ports which run MicroPython executable from the OS command
prompts (like the Unix port), upip can be (and indeed, usually is)
run from the command line instead of MicroPython’s own REPL. The
commands which corresponds to the example above are:

micropython -m upip -h
micropython -m upip install [-p <path>] <packages>...
micropython -m upip install micropython-pystone_lowmem

[TODO: Describe installation path.]

Cross-installing packages

For MicroPython ports without native networking
capabilities, the recommend process is “cross-installing” them into a
“directory image” using the MicroPython Unix port, and then
transferring this image to a device by suitable means.

Installing to a directory image involves using -p switch to upip:

micropython -m upip install -p install_dir micropython-pystone_lowmem

After this command, the package content (and contents of every depenency
packages) will be available in the install_dir/ subdirectory. You
would need to transfer contents of this directory (without the
install_dir/ prefix) to the device, at the suitable location, where
it can be found by the Python import statement (see discussion of
the upip installation path above).

Cross-installing packages with freezing

For the low-memory MicroPython ports, the process
described in the previous section does not provide the most efficient
resource usage,because the packages are installed in the source form,
so need to be compiled to the bytecome on each import. This compilation
requires RAM, and the resulting bytecode is also stored in RAM, reducing
its amount available for storing application data. Moreover, the process
above requires presence of the filesystem on a device, and the most
resource-constrained devices may not even have it.

The bytecode freezing is a process which resolves all the issues
mentioned above:

	The source code is pre-compiled into bytecode and store as such.

	The bytecode is stored in ROM, not RAM.

	Filesystem is not required for frozen packages.

Using frozen bytecode requires building the executable (firmware)
for a given MicroPython port from the C source code. Consequently,
the process is:

	Follow the instructions for a particular port on setting up a
toolchain and building the port. For example, for ESP8266 port,
study instructions in ports/esp8266/README.md and follow them.
Make sure you can build the port and deploy the resulting
executable/firmware successfully before proceeding to the next steps.

	Build MicroPython Unix port and make sure it is in your PATH and
you can execute micropython.

	Change to port’s directory (e.g. ports/esp8266/ for ESP8266).

	Run make clean-frozen. This step cleans up any previous
modules which were installed for freezing (consequently, you need
to skip this step to add additional modules, instead of starting
from scratch).

	Run micropython -m upip install -p modules <packages>... to
install packages you want to freeze.

	Run make clean.

	Run make.

After this, you should have the executable/firmware with modules as
the bytecode inside, which you can deploy the usual way.

Few notes:

	Step 5 in the sequence above assumes that the distribution package
is available from PyPI. If that is not the case, you would need
to copy Python source files manually to modules/ subdirectory
of the port port directory. (Note that upip does not support
installing from e.g. version control repositories).

	The firmware for baremetal devices usually has size restrictions,
so adding too many frozen modules may overflow it. Usually, you
would get a linking error if this happens. However, in some cases,
an image may be produced, which is not runnable on a device. Such
cases are in general bugs, and should be reported and further
investigated. If you face such a situation, as an initial step,
you may want to decrease the amount of frozen modules included.

Creating distribution packages

Distribution packages for MicroPython are created in the same manner
as for CPython or any other Python implementation, see references at
the end of chapter. Setuptools (instead of distutils) should be used,
because distutils do not support dependencies and other features. “Source
distribution” (sdist) format is used for packaging. The post-processing
discussed above, (and pre-processing discussed in the following section)
is achieved by using custom sdist command for setuptools. Thus, packaging
steps remain the same as for the standard setuptools, the user just
needs to override sdist command implementation by passing the
appropriate argument to setup() call:

from setuptools import setup
import sdist_upip

setup(
 ...,
 cmdclass={'sdist': sdist_upip.sdist}
)

The sdist_upip.py module as referenced above can be found in
micropython-lib:
https://github.com/micropython/micropython-lib/blob/master/sdist_upip.py

Application resources

A complete application, besides the source code, oftentimes also consists
of data files, e.g. web page templates, game images, etc. It’s clear how
to deal with those when application is installed manually - you just put
those data files in the filesystem at some location and use the normal
file access functions.

The situation is different when deploying applications from packages - this
is more advanced, streamlined and flexible way, but also requires more
advanced approach to accessing data files. This approach is treating
the data files as “resources”, and abstracting away access to them.

Python supports resource access using its “setuptools” library, using
pkg_resources module. MicroPython, following its usual approach,
implements subset of the functionality of that module, specifically
pkg_resources.resource_stream(package, resource) function.
The idea is that an application calls this function, passing a
resource identifier, which is a relative path to data file within
the specified package (usually top-level application package). It
returns a stream object which can be used to access resource contents.
Thus, the resource_stream() emulates interface of the standard
open() function.

Implementation-wise, resource_stream() uses file operations
underlyingly, if distribution package is install in the filesystem.
However, it also supports functioning without the underlying filesystem,
e.g. if the package is frozen as the bytecode. This however requires
an extra intermediate step when packaging application - creation of
“Python resource module”.

The idea of this module is to convert binary data to a Python bytes
object, and put it into the dictionary, indexed by the resource name.
This conversion is done automatically using overridden sdist command
described in the previous section.

Let’s trace the complete process using the following example. Suppose
your application has the following structure:

my_app/
 __main__.py
 utils.py
 data/
 page.html
 image.png

__main__.py and utils.py should access resources using the
following calls:

import pkg_resources

pkg_resources.resource_stream(__name__, "data/page.html")
pkg_resources.resource_stream(__name__, "data/image.png")

You can develop and debug using the MicroPython Unix port as usual.
When time comes to make a distribution package out of it, just use
overridden “sdist” command from sdist_upip.py module as described in
the previous section.

This will create a Python resource module named R.py, based on the
files declared in MANIFEST or MANIFEST.in files (any non-.py
file will be considered a resource and added to R.py) - before
proceeding with the normal packaging steps.

Prepared like this, your application will work both when deployed to
filesystem and as frozen bytecode.

If you would like to debug R.py creation, you can run:

python3 setup.py sdist --manifest-only

Alternatively, you can use tools/mpy_bin2res.py script from the
MicroPython distribution, in which can you will need to pass paths
to all resource files:

mpy_bin2res.py data/page.html data/image.png

References

	Python Packaging User Guide: https://packaging.python.org/

	Setuptools documentation: https://setuptools.readthedocs.io/

	Distutils documentation: https://docs.python.org/3/library/distutils.html

Inline Assembler for Thumb2 architectures

(The Technic Hub uses an ARM Cortex-M4 processor which uses Thumb2 instructions, so this section of the
Micropython docs has been left in, but it’s left as an exercise for the reader how to actually get started
doing assembler programming on the Hub!)

This document assumes some familiarity with assembly language programming and should be read after studying
a Thumb2 tutorial like the Pyboard Assembler Tutorial in the main Micropython docs. For a detailed description
of the instruction set consult the Architecture Reference Manual detailed below.
The inline assembler supports a subset of the ARM Thumb-2 instruction set described here. The syntax tries
to be as close as possible to that defined in the above ARM manual, converted to Python function calls.

Instructions operate on 32 bit signed integer data except where stated otherwise. Most supported instructions
operate on registers R0-R7 only: where R8-R15 are supported this is stated. Registers R8-R12 must be
restored to their initial value before return from a function. Registers R13-R15 constitute the Link Register,
Stack Pointer and Program Counter respectively.

Document conventions

Where possible the behaviour of each instruction is described in Python, for example

	add(Rd, Rn, Rm) Rd = Rn + Rm

This enables the effect of instructions to be demonstrated in Python. In certain case this is impossible
because Python doesn’t support concepts such as indirection. The pseudocode employed in such cases is
described on the relevant page.

Instruction Categories

The following sections details the subset of the ARM Thumb-2 instruction set supported by MicroPython.

	1. Register move instructions

	2. Load register from memory

	3. Store register to memory

	4. Logical & Bitwise instructions

	5. Arithmetic instructions

	6. Comparison instructions

	7. Branch instructions

	8. Stack push and pop

	9. Miscellaneous instructions

	10. Floating Point instructions

	11. Assembler Directives

Usage examples

These sections provide further code examples and hints on the use of the assembler.

	1. Hints and tips

References

	Assembler Tutorial

	Wiki hints and tips [http://wiki.micropython.org/platforms/boards/pyboard/assembler]

	uPy Inline Assembler source-code,
emitinlinethumb.c [https://github.com/micropython/micropython/blob/master/py/emitinlinethumb.c]

	ARM Thumb2 Instruction Set Quick Reference
Card [http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001l/QRC0001_UAL.pdf]

	RM0090 Reference
Manual [http://www.google.ae/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CBoQFjAA&url=http%3A%2F%2Fwww.st.com%2Fst-web-ui%2Fstatic%2Factive%2Fen%2Fresource%2Ftechnical%2Fdocument%2Freference_manual%2FDM00031020.pdf&ei=G0rSU66xFeuW0QWYwoD4CQ&usg=AFQjCNFuW6TgzE4QpahO_U7g3f3wdwecAg&sig2=iET-R0y9on_Pbflzf9aYDw&bvm=bv.71778758,bs.1,d.bGQ]

	ARM v7-M Architecture Reference Manual (Available on the
ARM site after a simple registration procedure. Also available on academic sites but beware of out of date versions.)

1. Register move instructions

1.1. Document conventions

Notation: Rd, Rn denote ARM registers R0-R15. immN denotes an immediate
value having a width of N bits. These instructions affect the condition flags.

1.2. Register moves

Where immediate values are used, these are zero-extended to 32 bits. Thus
mov(R0, 0xff) will set R0 to 255.

	mov(Rd, imm8) Rd = imm8

	mov(Rd, Rn) Rd = Rn

	movw(Rd, imm16) Rd = imm16

	movt(Rd, imm16) Rd = (Rd & 0xffff) | (imm16 << 16)

movt writes an immediate value to the top halfword of the destination register.
It does not affect the contents of the bottom halfword.

	movwt(Rd, imm32) Rd = imm32

movwt is a pseudo-instruction: the MicroPython assembler emits a movw followed
by a movt to move a 32-bit value into Rd.

2. Load register from memory

2.1. Document conventions

Notation: Rt, Rn denote ARM registers R0-R7 except where stated. immN represents an immediate
value having a width of N bits hence imm5 is constrained to the range 0-31. [Rn + immN] is the contents
of the memory address obtained by adding Rn and the offset immN. Offsets are measured in
bytes. These instructions affect the condition flags.

2.2. Register Load

	ldr(Rt, [Rn, imm7]) Rt = [Rn + imm7] Load a 32 bit word

	ldrb(Rt, [Rn, imm5]) Rt = [Rn + imm5] Load a byte

	ldrh(Rt, [Rn, imm6]) Rt = [Rn + imm6] Load a 16 bit half word

Where a byte or half word is loaded, it is zero-extended to 32 bits.

The specified immediate offsets are measured in bytes. Hence in the case of ldr the 7 bit value
enables 32 bit word aligned values to be accessed with a maximum offset of 31 words. In the case of ldrh the
6 bit value enables 16 bit half-word aligned values to be accessed with a maximum offset of 31 half-words.

3. Store register to memory

3.1. Document conventions

Notation: Rt, Rn denote ARM registers R0-R7 except where stated. immN represents an immediate
value having a width of N bits hence imm5 is constrained to the range 0-31. [Rn + imm5] is the
contents of the memory address obtained by adding Rn and the offset imm5. Offsets are measured in
bytes. These instructions do not affect the condition flags.

3.2. Register Store

	str(Rt, [Rn, imm7]) [Rn + imm7] = Rt Store a 32 bit word

	strb(Rt, [Rn, imm5]) [Rn + imm5] = Rt Store a byte (b0-b7)

	strh(Rt, [Rn, imm6]) [Rn + imm6] = Rt Store a 16 bit half word (b0-b15)

The specified immediate offsets are measured in bytes. Hence in the case of str the 7 bit value
enables 32 bit word aligned values to be accessed with a maximum offset of 31 words. In the case of strh the
6 bit value enables 16 bit half-word aligned values to be accessed with a maximum offset of 31 half-words.

4. Logical & Bitwise instructions

4.1. Document conventions

Notation: Rd, Rn denote ARM registers R0-R7 except in the case of the
special instructions where R0-R15 may be used. Rn<a-b> denotes an ARM register
whose contents must lie in range a <= contents <= b. In the case of instructions
with two register arguments, it is permissible for them to be identical. For example
the following will zero R0 (Python R0 ^= R0) regardless of its initial contents.

	eor(r0, r0)

These instructions affect the condition flags except where stated.

4.2. Logical instructions

	and_(Rd, Rn) Rd &= Rn

	orr(Rd, Rn) Rd |= Rn

	eor(Rd, Rn) Rd ^= Rn

	mvn(Rd, Rn) Rd = Rn ^ 0xffffffff i.e. Rd = 1’s complement of Rn

	bic(Rd, Rn) Rd &= ~Rn bit clear Rd using mask in Rn

Note the use of “and_” instead of “and”, because “and” is a reserved keyword in Python.

4.3. Shift and rotation instructions

	lsl(Rd, Rn<0-31>) Rd <<= Rn

	lsr(Rd, Rn<1-32>) Rd = (Rd & 0xffffffff) >> Rn Logical shift right

	asr(Rd, Rn<1-32>) Rd >>= Rn arithmetic shift right

	ror(Rd, Rn<1-31>) Rd = rotate_right(Rd, Rn) Rd is rotated right Rn bits.

A rotation by (for example) three bits works as follows. If Rd initially
contains bits b31 b30..b0 after rotation it will contain b2 b1 b0 b31 b30..b3

4.4. Special instructions

Condition codes are unaffected by these instructions.

	clz(Rd, Rn) Rd = count_leading_zeros(Rn)

count_leading_zeros(Rn) returns the number of binary zero bits before the first binary one bit in Rn.

	rbit(Rd, Rn) Rd = bit_reverse(Rn)

bit_reverse(Rn) returns the bit-reversed contents of Rn. If Rn contains bits b31 b30..b0 Rd will be set
to b0 b1 b2..b31

Trailing zeros may be counted by performing a bit reverse prior to executing clz.

5. Arithmetic instructions

5.1. Document conventions

Notation: Rd, Rm, Rn denote ARM registers R0-R7. immN denotes an immediate
value having a width of N bits e.g. imm8, imm3. carry denotes
the carry condition flag, not(carry) denotes its complement. In the case of instructions
with more than one register argument, it is permissible for some to be identical. For example
the following will add the contents of R0 to itself, placing the result in R0:

	add(r0, r0, r0)

Arithmetic instructions affect the condition flags except where stated.

5.2. Addition

	add(Rdn, imm8) Rdn = Rdn + imm8

	add(Rd, Rn, imm3) Rd = Rn + imm3

	add(Rd, Rn, Rm) Rd = Rn +Rm

	adc(Rd, Rn) Rd = Rd + Rn + carry

5.3. Subtraction

	sub(Rdn, imm8) Rdn = Rdn - imm8

	sub(Rd, Rn, imm3) Rd = Rn - imm3

	sub(Rd, Rn, Rm) Rd = Rn - Rm

	sbc(Rd, Rn) Rd = Rd - Rn - not(carry)

5.4. Negation

	neg(Rd, Rn) Rd = -Rn

5.5. Multiplication and division

	mul(Rd, Rn) Rd = Rd * Rn

This produces a 32 bit result with overflow lost. The result may be treated as
signed or unsigned according to the definition of the operands.

	sdiv(Rd, Rn, Rm) Rd = Rn / Rm

	udiv(Rd, Rn, Rm) Rd = Rn / Rm

These functions perform signed and unsigned division respectively. Condition flags
are not affected.

6. Comparison instructions

These perform an arithmetic or logical instruction on two arguments, discarding the result
but setting the condition flags. Typically these are used to test data values without changing
them prior to executing a conditional branch.

6.1. Document conventions

Notation: Rd, Rm, Rn denote ARM registers R0-R7. imm8 denotes an immediate
value having a width of 8 bits.

6.2. The Application Program Status Register (APSR)

This contains four bits which are tested by the conditional branch instructions. Typically a
conditional branch will test multiple bits, for example bge(LABEL). The meaning of
condition codes can depend on whether the operands of an arithmetic instruction are viewed as
signed or unsigned integers. Thus bhi(LABEL) assumes unsigned numbers were processed while
bgt(LABEL) assumes signed operands.

6.3. APSR Bits

	Z (zero)

This is set if the result of an operation is zero or the operands of a comparison are equal.

	N (negative)

Set if the result is negative.

	C (carry)

An addition sets the carry flag when the result overflows out of the MSB, for example adding
0x80000000 and 0x80000000. By the nature of two’s complement arithmetic this behaviour is reversed
on subtraction, with a borrow indicated by the carry bit being clear. Thus 0x10 - 0x01 is executed
as 0x10 + 0xffffffff which will set the carry bit.

	V (overflow)

The overflow flag is set if the result, viewed as a two’s compliment number, has the “wrong” sign
in relation to the operands. For example adding 1 to 0x7fffffff will set the overflow bit because
the result (0x8000000), viewed as a two’s complement integer, is negative. Note that in this instance
the carry bit is not set.

6.4. Comparison instructions

These set the APSR (Application Program Status Register) N (negative), Z (zero), C (carry) and V
(overflow) flags.

	cmp(Rn, imm8) Rn - imm8

	cmp(Rn, Rm) Rn - Rm

	cmn(Rn, Rm) Rn + Rm

	tst(Rn, Rm) Rn & Rm

6.5. Conditional execution

The it and ite instructions provide a means of conditionally executing from one to four subsequent
instructions without the need for a label.

	it(<condition>) If then

Execute the next instruction if <condition> is true:

cmp(r0, r1)
it(eq)
mov(r0, 100) # runs if r0 == r1
execution continues here

	ite(<condition>) If then else

If <condtion> is true, execute the next instruction, otherwise execute the
subsequent one. Thus:

cmp(r0, r1)
ite(eq)
mov(r0, 100) # runs if r0 == r1
mov(r0, 200) # runs if r0 != r1
execution continues here

This may be extended to control the execution of upto four subsequent instructions: it[x[y[z]]]
where x,y,z=t/e; e.g. itt, itee, itete, ittte, itttt, iteee, etc.

7. Branch instructions

These cause execution to jump to a target location usually specified by a label (see the label
assembler directive). Conditional branches and the it and ite instructions test
the Application Program Status Register (APSR) N (negative), Z (zero), C (carry) and V
(overflow) flags to determine whether the branch should be executed.

Most of the exposed assembler instructions (including move operations) set the flags but
there are explicit comparison instructions to enable values to be tested.

Further detail on the meaning of the condition flags is provided in the section
describing comparison functions.

7.1. Document conventions

Notation: Rm denotes ARM registers R0-R15. LABEL denotes a label defined with the
label() assembler directive. <condition> indicates one of the following condition
specifiers:

	eq Equal to (result was zero)

	ne Not equal

	cs Carry set

	cc Carry clear

	mi Minus (negative)

	pl Plus (positive)

	vs Overflow set

	vc Overflow clear

	hi > (unsigned comparison)

	ls <= (unsigned comparison)

	ge >= (signed comparison)

	lt < (signed comparison)

	gt > (signed comparison)

	le <= (signed comparison)

7.2. Branch to label

	b(LABEL) Unconditional branch

	beq(LABEL) branch if equal

	bne(LABEL) branch if not equal

	bge(LABEL) branch if greater than or equal

	bgt(LABEL) branch if greater than

	blt(LABEL) branch if less than (<) (signed)

	ble(LABEL) branch if less than or equal to (<=) (signed)

	bcs(LABEL) branch if carry flag is set

	bcc(LABEL) branch if carry flag is clear

	bmi(LABEL) branch if negative

	bpl(LABEL) branch if positive

	bvs(LABEL) branch if overflow flag set

	bvc(LABEL) branch if overflow flag is clear

	bhi(LABEL) branch if higher (unsigned)

	bls(LABEL) branch if lower or equal (unsigned)

7.3. Long branches

The code produced by the branch instructions listed above uses a fixed bit width to specify the
branch destination, which is PC relative. Consequently in long programs where the
branch instruction is remote from its destination the assembler will produce a “branch not in
range” error. This can be overcome with the “wide” variants such as

	beq_w(LABEL) long branch if equal

Wide branches use 4 bytes to encode the instruction (compared with 2 bytes for standard branch instructions).

7.4. Subroutines (functions)

When entering a subroutine the processor stores the return address in register r14, also
known as the link register (lr). Return to the instruction after the subroutine call is
performed by updating the program counter (r15 or pc) from the link register, This
process is handled by the following instructions.

	bl(LABEL)

Transfer execution to the instruction after LABEL storing the return address in
the link register (r14).

	bx(Rm) Branch to address specified by Rm.

Typically bx(lr) is issued to return from a subroutine. For nested subroutines the
link register of outer scopes must be saved (usually on the stack) before performing
inner subroutine calls.

8. Stack push and pop

8.1. Document conventions

The push() and pop() instructions accept as their argument a register set containing
a subset, or possibly all, of the general-purpose registers R0-R12 and the link register (lr or R14).
As with any Python set the order in which the registers are specified is immaterial. Thus the
in the following example the pop() instruction would restore R1, R7 and R8 to their contents prior
to the push():

	push({r1, r8, r7}) Save three registers on the stack.

	pop({r7, r1, r8}) Restore them

8.2. Stack operations

	push({regset}) Push a set of registers onto the stack

	pop({regset}) Restore a set of registers from the stack

9. Miscellaneous instructions

	nop() pass no operation.

	wfi() Suspend execution in a low power state until an interrupt occurs.

	cpsid(flags) set the Priority Mask Register - disable interrupts.

	cpsie(flags) clear the Priority Mask Register - enable interrupts.

	mrs(Rd, special_reg) Rd = special_reg copy a special register to a general register. The special register
may be IPSR (Interrupt Status Register) or BASEPRI (Base Priority Register). The IPSR provides a means of determining
the exception number of an interrupt being processed. It contains zero if no interrupt is being processed.

Currently the cpsie() and cpsid() functions are partially implemented.
They require but ignore the flags argument and serve as a means of enabling and disabling interrupts.

10. Floating Point instructions

These instructions support the use of the ARM floating point coprocessor
(on platforms such as the Pyboard which are equipped with one). The FPU
has 32 registers known as s0-s31 each of which can hold a single
precision float. Data can be passed between the FPU registers and the
ARM core registers with the vmov instruction.

Note that MicroPython doesn’t support passing floats to
assembler functions, nor can you put a float into r0 and expect a
reasonable result. There are two ways to overcome this. The first is to
use arrays, and the second is to pass and/or return integers and convert
to and from floats in code.

10.1. Document conventions

Notation: Sd, Sm, Sn denote FPU registers, Rd, Rm, Rn denote ARM core
registers. The latter can be any ARM core register although registers
R13-R15 are unlikely to be appropriate in this context.

10.2. Arithmetic

	vadd(Sd, Sn, Sm) Sd = Sn + Sm

	vsub(Sd, Sn, Sm) Sd = Sn - Sm

	vneg(Sd, Sm) Sd = -Sm

	vmul(Sd, Sn, Sm) Sd = Sn * Sm

	vdiv(Sd, Sn, Sm) Sd = Sn / Sm

	vsqrt(Sd, Sm) Sd = sqrt(Sm)

Registers may be identical: vmul(S0, S0, S0) will execute S0 = S0*S0

10.3. Move between ARM core and FPU registers

	vmov(Sd, Rm) Sd = Rm

	vmov(Rd, Sm) Rd = Sm

The FPU has a register known as FPSCR, similar to the ARM core’s APSR, which stores condition
codes plus other data. The following instructions provide access to this.

	vmrs(APSR_nzcv, FPSCR)

Move the floating-point N, Z, C, and V flags to the APSR N, Z, C, and V flags.

This is done after an instruction such as an FPU
comparison to enable the condition codes to be tested by the assembler
code. The following is a more general form of the instruction.

	vmrs(Rd, FPSCR) Rd = FPSCR

10.4. Move between FPU register and memory

	vldr(Sd, [Rn, offset]) Sd = [Rn + offset]

	vstr(Sd, [Rn, offset]) [Rn + offset] = Sd

Where [Rn + offset] denotes the memory address obtained by adding Rn to the offset. This
is specified in bytes. Since each float value occupies a 32 bit word, when accessing arrays of
floats the offset must always be a multiple of four bytes.

10.5. Data Comparison

	vcmp(Sd, Sm)

Compare the values in Sd and Sm and set the FPU N, Z,
C, and V flags. This would normally be followed by vmrs(APSR_nzcv, FPSCR)
to enable the results to be tested.

10.6. Convert between integer and float

	vcvt_f32_s32(Sd, Sm) Sd = float(Sm)

	vcvt_s32_f32(Sd, Sm) Sd = int(Sm)

11. Assembler Directives

11.1. Labels

	label(INNER1)

This defines a label for use in a branch instruction. Thus elsewhere in the code a b(INNER1)
will cause execution to continue with the instruction after the label directive.

11.2. Defining inline data

The following assembler directives facilitate embedding data in an assembler code block.

	data(size, d0, d1 .. dn)

The data directive creates n array of data values in memory. The first argument specifies the
size in bytes of the subsequent arguments. Hence the first statement below will cause the
assembler to put three bytes (with values 2, 3 and 4) into consecutive memory locations
while the second will cause it to emit two four byte words.

data(1, 2, 3, 4)
data(4, 2, 100000)

Data values longer than a single byte are stored in memory in little-endian format.

	align(nBytes)

Align the following instruction to an nBytes value. ARM Thumb-2 instructions must be two
byte aligned, hence it’s advisable to issue align(2) after data directives and
prior to any subsequent code. This ensures that the code will run irrespective of the
size of the data array.

1. Hints and tips

The following are some examples of the use of the inline assembler and some
information on how to work around its limitations. In this document the term
“assembler function” refers to a function declared in Python with the
@micropython.asm_thumb decorator, whereas “subroutine” refers to assembler
code called from within an assembler function.

1.1. Code branches and subroutines

It is important to appreciate that labels are local to an assembler function.
There is currently no way for a subroutine defined in one function to be called
from another.

To call a subroutine the instruction bl(LABEL) is issued. This transfers
control to the instruction following the label(LABEL) directive and stores
the return address in the link register (lr or r14). To return the
instruction bx(lr) is issued which causes execution to continue with
the instruction following the subroutine call. This mechanism implies that, if
a subroutine is to call another, it must save the link register prior to
the call and restore it before terminating.

The following rather contrived example illustrates a function call. Note that
it’s necessary at the start to branch around all subroutine calls: subroutines
end execution with bx(lr) while the outer function simply “drops off the end”
in the style of Python functions.

@micropython.asm_thumb
def quad(r0):
 b(START)
 label(DOUBLE)
 add(r0, r0, r0)
 bx(lr)
 label(START)
 bl(DOUBLE)
 bl(DOUBLE)

print(quad(10))

The following code example demonstrates a nested (recursive) call: the classic
Fibonacci sequence. Here, prior to a recursive call, the link register is saved
along with other registers which the program logic requires to be preserved.

@micropython.asm_thumb
def fib(r0):
 b(START)
 label(DOFIB)
 push({r1, r2, lr})
 cmp(r0, 1)
 ble(FIBDONE)
 sub(r0, 1)
 mov(r2, r0) # r2 = n -1
 bl(DOFIB)
 mov(r1, r0) # r1 = fib(n -1)
 sub(r0, r2, 1)
 bl(DOFIB) # r0 = fib(n -2)
 add(r0, r0, r1)
 label(FIBDONE)
 pop({r1, r2, lr})
 bx(lr)
 label(START)
 bl(DOFIB)

for n in range(10):
 print(fib(n))

1.2. Argument passing and return

The tutorial details the fact that assembler functions can support from zero to
three arguments, which must (if used) be named r0, r1 and r2. When
the code executes the registers will be initialised to those values.

The data types which can be passed in this way are integers and memory
addresses. With current firmware all possible 32 bit values may be passed and
returned. If the return value may have the most significant bit set a Python
type hint should be employed to enable MicroPython to determine whether the
value should be interpreted as a signed or unsigned integer: types are
int or uint.

@micropython.asm_thumb
def uadd(r0, r1) -> uint:
 add(r0, r0, r1)

hex(uadd(0x40000000,0x40000000)) will return 0x80000000, demonstrating the
passing and return of integers where bits 30 and 31 differ.

The limitations on the number of arguments and return values can be overcome by means
of the array module which enables any number of values of any type to be accessed.

1.2.1. Multiple arguments

If a Python array of integers is passed as an argument to an assembler
function, the function will receive the address of a contiguous set of integers.
Thus multiple arguments can be passed as elements of a single array. Similarly a
function can return multiple values by assigning them to array elements.
Assembler functions have no means of determining the length of an array:
this will need to be passed to the function.

This use of arrays can be extended to enable more than three arrays to be used.
This is done using indirection: the uctypes module supports addressof()
which will return the address of an array passed as its argument. Thus you can
populate an integer array with the addresses of other arrays:

from uctypes import addressof
@micropython.asm_thumb
def getindirect(r0):
 ldr(r0, [r0, 0]) # Address of array loaded from passed array
 ldr(r0, [r0, 4]) # Return element 1 of indirect array (24)

def testindirect():
 a = array.array('i',[23, 24])
 b = array.array('i',[0,0])
 b[0] = addressof(a)
 print(getindirect(b))

1.2.2. Non-integer data types

These may be handled by means of arrays of the appropriate data type. For
example, single precision floating point data may be processed as follows.
This code example takes an array of floats and replaces its contents with
their squares.

from array import array

@micropython.asm_thumb
def square(r0, r1):
 label(LOOP)
 vldr(s0, [r0, 0])
 vmul(s0, s0, s0)
 vstr(s0, [r0, 0])
 add(r0, 4)
 sub(r1, 1)
 bgt(LOOP)

a = array('f', (x for x in range(10)))
square(a, len(a))
print(a)

The uctypes module supports the use of data structures beyond simple
arrays. It enables a Python data structure to be mapped onto a bytearray
instance which may then be passed to the assembler function.

1.3. Named constants

Assembler code may be made more readable and maintainable by using named
constants rather than littering code with numbers. This may be achieved
thus:

MYDATA = const(33)

@micropython.asm_thumb
def foo():
 mov(r0, MYDATA)

The const() construct causes MicroPython to replace the variable name
with its value at compile time. If constants are declared in an outer
Python scope they can be shared between multiple assembler functions and
with Python code.

1.4. Assembler code as class methods

MicroPython passes the address of the object instance as the first argument
to class methods. This is normally of little use to an assembler function.
It can be avoided by declaring the function as a static method thus:

class foo:
 @staticmethod
 @micropython.asm_thumb
 def bar(r0):
 add(r0, r0, r0)

1.5. Use of unsupported instructions

These can be coded using the data statement as shown below. While
push() and pop() are supported the example below illustrates the
principle. The necessary machine code may be found in the ARM v7-M
Architecture Reference Manual. Note that the first argument of data
calls such as

data(2, 0xe92d, 0x0f00) # push r8,r9,r10,r11

indicates that each subsequent argument is a two byte quantity.

1.6. Overcoming MicroPython’s integer restriction

The Pyboard chip includes a CRC generator. Its use presents a problem in
MicroPython because the returned values cover the full gamut of 32 bit
quantities whereas small integers in MicroPython cannot have differing values
in bits 30 and 31. This limitation is overcome with the following code, which
uses assembler to put the result into an array and Python code to
coerce the result into an arbitrary precision unsigned integer.

from array import array
import stm

def enable_crc():
 stm.mem32[stm.RCC + stm.RCC_AHB1ENR] |= 0x1000

def reset_crc():
 stm.mem32[stm.CRC+stm.CRC_CR] = 1

@micropython.asm_thumb
def getval(r0, r1):
 movwt(r3, stm.CRC + stm.CRC_DR)
 str(r1, [r3, 0])
 ldr(r2, [r3, 0])
 str(r2, [r0, 0])

def getcrc(value):
 a = array('i', [0])
 getval(a, value)
 return a[0] & 0xffffffff # coerce to arbitrary precision

enable_crc()
reset_crc()
for x in range(20):
 print(hex(getcrc(0)))

Developing and building MicroPython

This chapter describes some options for extending MicroPython in C. Note
that it doesn’t aim to be a complete guide for developing with MicroPython.
See the getting started guide [https://github.com/micropython/micropython/wiki/Getting-Started] for further information.

	MicroPython external C modules

MicroPython external C modules

When developing modules for use with MicroPython you may find you run into
limitations with the Python environment, often due to an inability to access
certain hardware resources or Python speed limitations.

If your limitations can’t be resolved with suggestions in Maximising MicroPython Speed,
writing some or all of your module in C is a viable option.

If your module is designed to access or work with commonly available
hardware or libraries please consider implementing it inside the MicroPython
source tree alongside similar modules and submitting it as a pull request.
If however you’re targeting obscure or proprietary systems it may make
more sense to keep this external to the main MicroPython repository.

This chapter describes how to compile such external modules into the
MicroPython executable or firmware image.

Structure of an external C module

A MicroPython user C module is a directory with the following files:

	*.c and/or *.h source code files for your module.

These will typically include the low level functionality being implemented and
the MicroPython binding functions to expose the functions and module(s).

Currently the best reference for writing these functions/modules is
to find similar modules within the MicroPython tree and use them as examples.

	micropython.mk contains the Makefile fragment for this module.

$(USERMOD_DIR) is available in micropython.mk as the path to your
module directory. As it’s redefined for each c module, is should be expanded
in your micropython.mk to a local make variable,
eg EXAMPLE_MOD_DIR := $(USERMOD_DIR)

Your micropython.mk must add your modules C files relative to your
expanded copy of $(USERMOD_DIR) to SRC_USERMOD, eg
SRC_USERMOD += $(EXAMPLE_MOD_DIR)/example.c

If you have custom CFLAGS settings or include folders to define, these
should be added to CFLAGS_USERMOD.

See below for full usage example.

Basic Example

This simple module named example provides a single function
example.add_ints(a, b) which adds the two integer args together and returns
the result.

Directory:

example/
├── example.c
└── micropython.mk

example.c

// Include required definitions first.
#include "py/obj.h"
#include "py/runtime.h"
#include "py/builtin.h"

// This is the function which will be called from Python as example.add_ints(a, b).
STATIC mp_obj_t example_add_ints(mp_obj_t a_obj, mp_obj_t b_obj) {
 // Extract the ints from the micropython input objects
 int a = mp_obj_get_int(a_obj);
 int b = mp_obj_get_int(b_obj);

 // Calculate the addition and convert to MicroPython object.
 return mp_obj_new_int(a + b);
}
// Define a Python reference to the function above
STATIC MP_DEFINE_CONST_FUN_OBJ_2(example_add_ints_obj, example_add_ints);

// Define all properties of the example module.
// Table entries are key/value pairs of the attribute name (a string)
// and the MicroPython object reference.
// All identifiers and strings are written as MP_QSTR_xxx and will be
// optimized to word-sized integers by the build system (interned strings).
STATIC const mp_rom_map_elem_t example_module_globals_table[] = {
 { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_example) },
 { MP_ROM_QSTR(MP_QSTR_add_ints), MP_ROM_PTR(&example_add_ints_obj) },
};
STATIC MP_DEFINE_CONST_DICT(example_module_globals, example_module_globals_table);

// Define module object.
const mp_obj_module_t example_user_cmodule = {
 .base = { &mp_type_module },
 .globals = (mp_obj_dict_t*)&example_module_globals,
};

// Register the module to make it available in Python
MP_REGISTER_MODULE(MP_QSTR_example, example_user_cmodule, MODULE_EXAMPLE_ENABLED);

micropython.mk

EXAMPLE_MOD_DIR := $(USERMOD_DIR)

Add all C files to SRC_USERMOD.
SRC_USERMOD += $(EXAMPLE_MOD_DIR)/example.c

We can add our module folder to include paths if needed
This is not actually needed in this example.
CFLAGS_USERMOD += -I$(EXAMPLE_MOD_DIR)

Finally you will need to define MODULE_EXAMPLE_ENABLED to 1. This
can be done by adding CFLAGS_EXTRA=-DMODULE_EXAMPLE_ENABLED=1 to
the make command, or editing mpconfigport.h or
mpconfigboard.h to add

#define MODULE_EXAMPLE_ENABLED (1)

Note that the exact method depends on the port as they have different
structures. If not done correctly it will compile but importing will
fail to find the module.

Compiling the cmodule into MicroPython

To build such a module, compile MicroPython (see getting started [https://github.com/micropython/micropython/wiki/Getting-Started]) with an
extra make flag named USER_C_MODULES set to the directory containing
all modules you want included (not to the module itself). For example:

Directory:

my_project/
├── modules/
│ └──example/
│ ├──example.c
│ └──micropython.mk
└── micropython/
 ├──ports/
 ... ├──stm32/
 ...

Building for stm32 port:

cd my_project/micropython/ports/stm32
make USER_C_MODULES=../../../modules CFLAGS_EXTRA=-DMODULE_EXAMPLE_ENABLED=1 all

Module usage in MicroPython

Once built into your copy of MicroPython, the module implemented
in example.c above can now be accessed in Python just
like any other builtin module, eg

import example
print(example.add_ints(1, 3))
should display 4

MicroPython license information

The MIT License (MIT)

Copyright (c) 2013-2017 Damien P. George, and others

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

 Python Module Index

 _ |
 a |
 c |
 e |
 f |
 g |
 h |
 m |
 p |
 r |
 s |
 u |
 v

 		 	

 		
 _	

 	[image: -]
 	
 _api	
 user API

 	
 	
 _api.app	
 application functions API

 	
 	
 _api.button	
 button functions API

 	
 	
 _api.colorsensor	
 color sensor functions API

 	
 	
 _api.distancesensor	
 distance sensor functions API

 	
 	
 _api.forcesensor	
 force sensor functions API

 	
 	
 _api.large_technic_hub	
 central hub API

 	
 	
 _api.lightmatrix	
 5x5 display functions API

 	
 	
 _api.motionsensor	
 motion sensor functions API

 	
 	
 _api.motor	
 motor functions API

 	
 	
 _api.motorpair	
 paired motor functions API

 	
 	
 _api.speaker	
 speaker functions API

 	
 	
 _api.statuslight	
 status light functions API

 	
 	
 _api.util	
 utility functions for the API code

 	
 	
 _onewire	
 Implementation of the OneWire protocol

 		 	

 		
 a	

 	
 	
 array	
 efficient arrays of numeric data

 		 	

 		
 c	

 	
 	
 cmath	
 mathematical functions for complex numbers

 	[image: -]
 	
 commands	
 commands module

 	
 	
 commands.abstract_handler	
 base class for handler classes

 	
 	
 commands.hub_methods	
 ???

 	
 	
 commands.light_methods	
 ???

 	
 	
 commands.linegraphmonitor_methods	
 ???

 	
 	
 commands.motor_methods	
 ???

 	
 	
 commands.move_methods	
 ???

 	
 	
 commands.program_methods	
 ???

 	
 	
 commands.sound_methods	
 ???

 	
 	
 commands.wait_methods	
 ???

 		 	

 		
 e	

 	
 	
 event_loop	
 event_loop module

 		 	

 		
 f	

 	
 	
 firmware	
 access and control system firmware

 		 	

 		
 g	

 	
 	
 gc	
 control the garbage collector

 		 	

 		
 h	

 	
 	
 hub	
 hub brick functionality

 	
 	
 hub_runtime	
 Hub main module

 		 	

 		
 m	

 	
 	
 machine	
 functions related to the hardware

 	
 	
 math	
 mathematical functions

 	
 	
 micropython	
 access and control MicroPython internals

 	
 	
 mindstorms	
 Mindstorms branding of the user API

 		 	

 		
 p	

 	
 	
 programrunner	
 run user programs

 	[image: -]
 	
 protocol	
 RI5 communication protocol

 	
 	
 protocol.notifications	
 ???

 	
 	
 protocol.rpc_protocol	
 ???

 	
 	
 protocol.ujsonrpc	
 ???

 		 	

 		
 r	

 	[image: -]
 	
 runtime	
 runtime module

 	
 	
 runtime.dirty_dict	
 ???

 	
 	
 runtime.multimotor	
 ???

 	
 	
 runtime.stack	
 ???

 	
 	
 runtime.timer	
 ???

 	
 	
 runtime.virtualmachine	
 ???

 	
 	
 runtime.vm_store	
 ???

 		 	

 		
 s	

 	
 	
 spike	
 Spike Prime branding of the user API

 	
 	
 sys	
 system specific functions

 	[image: -]
 	
 system	
 system module

 	
 	
 system.abstractwrapper	
 ???

 	
 	
 system.callbacks	
 ???

 	
 	
 system.callbacks.customcallbacks	
 ???

 	
 	
 system.display	
 ???

 	
 	
 system.motors	
 ???

 	
 	
 system.motorwrapper	
 ???

 	
 	
 system.move	
 ???

 	
 	
 system.movewrapper	
 ???

 	
 	
 system.sound	
 ???

 		 	

 		
 u	

 	
 	
 ubinascii	
 binary/ASCII conversions

 	
 	
 ucollections	
 collection and container types

 	
 	
 uctypes	
 access binary data in a structured way

 	
 	
 uerrno	
 system error codes

 	
 	
 uhashlib	
 hashing algorithms

 	
 	
 uheapq	
 heap queue algorithm

 	[image: -]
 	
 ui	

 	
 	
 ui.hubui	
 menu system

 	
 	
 uio	
 input/output streams

 	
 	
 ujson	
 JSON encoding and decoding

 	
 	
 uos	
 basic "operating system" services

 	
 	
 urandom	
 random number generation

 	
 	
 ure	
 regular expressions

 	
 	
 uselect	
 wait for events on a set of streams

 	
 	
 ustruct	
 pack and unpack primitive data types

 	[image: -]
 	
 util	
 misc utility module

 	
 	
 util.animations	
 animation utility module

 	
 	
 util.color	
 color utility module

 	
 	
 util.constants	
 constants module

 	
 	
 util.error_handler	
 error handling utility module

 	
 	
 util.log	
 log utility module

 	
 	
 util.motor	
 motor utility module

 	
 	
 util.print_override	
 remote printing module

 	
 	
 util.resetter	
 resetting utility module

 	
 	
 util.rotation	
 rotation utility module

 	
 	
 util.schedule	
 scheduling utility module

 	
 	
 util.scratch	
 scratch utility module

 	
 	
 util.sensors	
 sensors utility module

 	
 	
 util.storage	
 storage utility module

 	
 	
 util.time	
 time utility module

 	
 	
 utime	
 time related functions

 	
 	
 utimeq	
 heap queue with times

 	
 	
 uzlib	
 zlib decompression

 		 	

 		
 v	

 	
 	
 version	
 version module

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Y
 | Z

_

 	
 	__bt_connect() (ui.hubui.HubUI method)

 	__bt_disconnect() (ui.hubui.HubUI method)

 	__call__() (machine.Pin method)

 	__cancel_animations() (ui.hubui.HubUI method)

 	__change_slot() (ui.hubui.HubUI method)

 	__connection_changed() (in module hub_runtime)

 	__del__() (hub.BT_VCP method)

 	__delitem__() (runtime.dirty_dict.DirtyDict method)

 	__enter__() (hub.BT_VCP method)

 	__exit__() (hub.BT_VCP method)

 	__FORCE_RESET_PATH__ (in module util.storage)

 	__get_slot_image() (ui.hubui.HubUI method)

 	__getitem__() (system.callbacks.ButtonCallbacks method)

 	(system.callbacks.PortCallbacks method)

 	__init__() (commands.hub_methods.HubMethods method)

 	(commands.light_methods.LightMethods method)

 	(commands.linegraphmonitor_methods.LinegraphMonitorMethods method)

 	(commands.motor_methods.MotorMethods method)

 	(commands.move_methods.MoveMethods method)

 	(commands.program_methods.ProgramMethods method)

 	(commands.sound_methods.SoundMethods method)

 	(commands.wait_methods.WaitMethods method)

 	(runtime.dirty_dict.DirtyDict method)

 	(system.display.DisplayWrapper method)

 	(system.motorwrapper.MotorWrapper method)

 	(system.movewrapper.MoveWrapper method)

 	(system.sound.SoundWrapper method)

 	__META_PATH__ (in module util.storage)

 	__on_center_button() (ui.hubui.HubUI method)

 	__on_connect_button() (ui.hubui.HubUI method)

 	__PROGRAM_PATH__ (in module util.storage)

 	__PROGRAM_PATH_EXT__ (in module util.storage)

 	__repl_reset() (util.resetter.RTTimer method)

 	__shutdown_timer() (ui.hubui.HubUI method)

 	__start_autoshutdown() (ui.hubui.HubUI method)

 	__STORAGE_PATH__ (in module util.storage)

 	__toggle_program() (ui.hubui.HubUI method)

 	__uch() (system.callbacks.ConnectionCallbacks method)

 	__version__ (in module hub)

 	_ACCEL (in module runtime.vm_store)

 	_AMBIENT_MODE (in module _api.colorsensor)

 	
 _api

 	module

 	
 _api.app

 	module

 	
 _api.button

 	module

 	
 _api.colorsensor

 	module

 	
 _api.distancesensor

 	module

 	
 _api.forcesensor

 	module

 	
 _api.large_technic_hub

 	module

 	
 _api.lightmatrix

 	module

 	
 _api.motionsensor

 	module

 	
 _api.motor

 	module

 	
 _api.motorpair

 	module

 	
 _api.speaker

 	module

 	
 _api.statuslight

 	module

 	
 _api.util

 	module

 	_BT_PREFIX (in module util.storage)

 	_calc_degrees() (in module system.motorwrapper)

 	_callback() (system.abstractwrapper.AbstractWrapper method)

 	_CARRIAGE_RETURN (in module protocol.ujsonrpc)

 	_check_condition() (runtime.stack.Stack method)

 	_clockwise() (in module system.motorwrapper)

 	_COLORLIST (in module _api.colorsensor)

 	_COLORMAP (in module _api.statuslight)

 	_COMBI_MODE (in module _api.colorsensor)

 	_counterclockwise() (in module system.motorwrapper)

 	_CURRENT_ROTATION (in module util.rotation)

 	_D (in module protocol.notifications)

 	_DEBUG_PAYLOAD (in module protocol.notifications)

 	
 	_DEFAULT_MODE (in module util.sensors)

 	_direction_to_steering() (system.movewrapper.MoveWrapper method)

 	_discard() (event_loop.EventLoop method)

 	_DISCONNECTED_ERROR (in module _api.motorpair)

 	_emit_runtime_error() (util.error_handler.ErrorHandler method)

 	_EMPTY_DICT (in module programrunner)

 	_ensure_folder_exists() (in module util.storage)

 	_ERROR (in module protocol.ujsonrpc)

 	_error_if_running() (commands.linegraphmonitor_methods.LinegraphMonitorMethods method)

 	_EVENT_LOOP (in module event_loop)

 	_EVENT_MODE (in module util.sensors)

 	_file_to_slotid() (in module util.storage)

 	_get_color() (_api.colorsensor.ColorSensor method)

 	_get_metadata() (in module util.storage)

 	_get_port_device() (in module _api.colorsensor)

 	(in module _api.forcesensor)

 	_handle_error() (util.error_handler.ErrorHandler method)

 	_handle_message() (protocol.ujsonrpc.JSONRPC method)

 	_handle_write_print_override() (commands.program_methods.ProgramMethods method)

 	_ID (in module protocol.ujsonrpc)

 	_ID_PREFIX (in module protocol.ujsonrpc)

 	_is_color_sensor() (in module _api.colorsensor)

 	_is_distance_sensor() (_api.distancesensor.DistanceSensor method)

 	_is_force_sensor() (in module _api.forcesensor)

 	_is_motor() (in module _api.motor)

 	(in module _api.motorpair)

 	(in module util.sensors)

 	_is_pressed() (_api.forcesensor.ForceSensor method)

 	_latest_activity (in module ui.hubui)

 	_LIGHT_MODE (in module _api.colorsensor)

 	_LOC (in module runtime.vm_store)

 	_LOG_FILE (in module util.log)

 	_mark_dirty() (runtime.dirty_dict.DirtyDict method)

 	_MEM (in module protocol.notifications)

 	_merge_display_params() (commands.light_methods.LightMethods static method)

 	_METHOD_PREFIX (in module protocol.ujsonrpc)

 	_MOTOR_PAIRING_ERROR (in module _api.motorpair)

 	_MOTOR_TYPES (in module util.sensors)

 	_move_slot_lookup() (in module util.storage)

 	_move_with_speed() (_api.motorpair.MotorPair method)

 	_NO_DATA (in module util.sensors)

 	_NOT_CONNECTED_ERROR (in module _api.app)

 	(in module util.print_override)

 	
 _onewire

 	module

 	_PAIR (in module runtime.vm_store)

 	_PARAMS (in module protocol.ujsonrpc)

 	_PCALIB (in module runtime.vm_store)

 	_play_sound() (_api.app.App method)

 	_pop_suspend_message() (protocol.ujsonrpc.JSONRPC method)

 	_PORT_INDEX_MAP (in module util.sensors)

 	_PORT_TO_IDX (in module system.motors)

 	_PORT_TYPE (in module util.sensors)

 	_PORTS (in module util.sensors)

 	_PRINT_OVERRIDE (in module commands.program_methods)

 	_program_start() (ui.hubui.HubUI method)

 	_program_stop() (ui.hubui.HubUI method)

 	_register() (system.abstractwrapper.AbstractWrapper method)

 	_register_method_handler() (protocol.rpc_protocol.RPCProtocol method)

 	_RESPONSE (in module protocol.ujsonrpc)

 	_REVERSE_MODES (in module util.sensors)

 	_RQ_LEN (in module protocol.notifications)

 	_RUNNING (in module util.time)

 	_set_metadata() (in module util.storage)

 	_set_mode() (_api.colorsensor.ColorSensor method)

 	(_api.distancesensor.DistanceSensor method)

 	_set_range_mode() (_api.distancesensor.DistanceSensor method)

 	_shortest() (in module system.motorwrapper)

 	_STALL (in module runtime.vm_store)

 	_start_test_task() (system.callbacks.customcallbacks.CustomSensorCallbackManager method)

 	_STARTED_AT (in module util.resetter)

 	(in module util.time)

 	_STAT (in module runtime.vm_store)

 	_STOP (in module runtime.vm_store)

 	_STOPPED_AT (in module util.time)

 	_SUFFIX (in module protocol.ujsonrpc)

 	_SUSPENDED_MSG_PATH_ (in module protocol.ujsonrpc)

 	_SYNC_DISPLAY (in module util.sensors)

 	_TRANSFER_HANDLE (in module commands.program_methods)

 	_type_change_handler() (in module util.sensors)

 	_update() (system.motors.Motors method)

 	_WQ_LEN (in module protocol.notifications)

 	_write_to_log() (in module util.log)

A

 	
 	a2b_base64() (in module ubinascii)

 	
 abs()

 	built-in function

 	AbstractBlockDev (class in uos)

 	AbstractHandler (class in commands.abstract_handler)

 	AbstractHandler._rpc (in module commands.abstract_handler)

 	AbstractWrapper (class in system.abstractwrapper)

 	accelerometer() (hub.Motion method)

 	accelerometer_filter() (hub.Motion method)

 	acos() (in module math)

 	acosh() (in module math)

 	ADC (class in machine), [1]

 	add_method() (protocol.ujsonrpc.JSONRPC method)

 	add_port_prop() (in module runtime.vm_store)

 	add_prop() (in module runtime.vm_store)

 	addressof() (in module uctypes)

 	adjust_brightness() (in module util.scratch)

 	af() (machine.Pin method)

 	af_list() (machine.Pin method)

 	
 all()

 	built-in function

 	alloc_emergency_exception_buf() (in module micropython)

 	
 any()

 	built-in function

 	
 	any() (hub.BT_VCP method)

 	(machine.UART method)

 	App (class in _api.app)

 	append() (array.array.array method)

 	(ucollections.deque method)

 	appl_checksum() (in module firmware)

 	appl_image_initialise() (in module firmware)

 	appl_image_read() (in module firmware)

 	appl_image_store() (in module firmware)

 	argv (in module sys)

 	ArithmeticError

 	
 array

 	module

 	ARRAY (in module uctypes)

 	array.array (class in array)

 	asin() (in module math)

 	asinh() (in module math)

 	AssertionError

 	atan() (in module math)

 	atan2() (in module math)

 	atanh() (in module math)

 	AttributeError

 	await_all() (runtime.multimotor.MultiMotor method)

 	await_callback() (system.abstractwrapper.AbstractWrapper method)

 	AZURE (in module util.color)

B

 	
 	b2a_base64() (in module ubinascii)

 	baremetal

 	BaseException

 	Battery (class in hub)

 	battery (in module hub)

 	Battery.BATTERY_BAD_BATTERY (in module hub)

 	Battery.BATTERY_HUB_TEMPERATURE_CRITICAL_OUT_OF_RANGE (in module hub)

 	Battery.BATTERY_NO_ERROR (in module hub)

 	Battery.BATTERY_TEMPERATURE_OUT_OF_RANGE (in module hub)

 	Battery.BATTERY_TEMPERATURE_SENSOR_FAIL (in module hub)

 	Battery.BATTERY_VOLTAGE_TOO_LOW (in module hub)

 	Battery.CHARGER_STATE_CHARGING_COMPLETED (in module hub)

 	Battery.CHARGER_STATE_CHARGING_ONGOING (in module hub)

 	Battery.CHARGER_STATE_DISCHARGING (in module hub)

 	Battery.CHARGER_STATE_FAIL (in module hub)

 	Battery.USB_CH_PORT_CDP (in module hub)

 	Battery.USB_CH_PORT_DCP (in module hub)

 	Battery.USB_CH_PORT_NONE (in module hub)

 	Battery.USB_CH_PORT_SDP (in module hub)

 	battery_status (in module util.sensors)

 	beep() (_api.speaker.Speaker method)

 	(hub.Sound method)

 	(system.sound.SoundWrapper method)

 	beep_async() (system.sound.SoundWrapper method)

 	BF_LEN (in module uctypes)

 	BF_POS (in module uctypes)

 	BFINT16 (in module uctypes)

 	BFINT32 (in module uctypes)

 	BFINT64 (in module uctypes)

 	BFINT8 (in module uctypes)

 	BFUINT16 (in module uctypes)

 	BFUINT32 (in module uctypes)

 	BFUINT64 (in module uctypes)

 	BFUINT8 (in module uctypes)

 	BIG_ENDIAN (in module uctypes)

 	
 bin()

 	built-in function

 	BLACK (in module util.color)

 	ble (in module hub)

 	BLUE (in module util.color)

 	bluetooth (class in hub)

 	(in module hub)

 	board

 	(class in machine)

 	bool (built-in class)

 	BOOLEAN (in module util.constants)

 	bootloader_version() (in module firmware)

 	bootup_animation() (in module util.animations)

 	BOOTUP_FRAMES (in module util.animations)

 	BRAKE (in module util.constants)

 	brake() (system.motorwrapper.MotorWrapper method)

 	(system.movewrapper.MoveWrapper method)

 	broadcast() (runtime.virtualmachine.VirtualMachine method)

 	bt (class in hub)

 	bt_animation() (in module util.animations)

 	BT_VCP (class in hub)

 	(in module hub)

 	(in module util.constants)

 	
 built-in function

 	abs()

 	all()

 	any()

 	bin()

 	callable()

 	chr()

 	classmethod()

 	compile()

 	delattr()

 	dir()

 	divmod()

 	enumerate()

 	eval()

 	exec()

 	execfile()

 	filter()

 	getattr()

 	globals()

 	hasattr()

 	hash()

 	help()

 	hex()

 	id()

 	isinstance()

 	issubclass()

 	iter()

 	len()

 	locals()

 	map()

 	max()

 	min()

 	next()

 	oct()

 	open()

 	ord()

 	pow()

 	print()

 	range()

 	repr()

 	reversed()

 	round()

 	setattr()

 	sorted()

 	spikeprint()

 	staticmethod()

 	sum()

 	super()

 	zip()

 	
 	Button (class in _api.button)

 	(class in hub)

 	button (in module hub)

 	Button.center (in module hub)

 	Button.connect (in module hub)

 	Button.left (in module hub)

 	Button.right (in module hub)

 	ButtonCallbacks (class in system.callbacks)

 	bytearray (built-in class)

 	bytearray_at() (in module uctypes)

 	byteorder (in module sys)

 	bytes (built-in class)

 	bytes_at() (in module uctypes)

 	BytesIO (class in uio), [1]

C

 	
 	calcsize() (in module ustruct)

 	calibration() (machine.RTC method)

 	call() (protocol.ujsonrpc.JSONRPC method)

 	call_soon() (event_loop.EventLoop method)

 	
 callable()

 	built-in function

 	callback() (hub.bluetooth method)

 	(hub.BT_VCP method)

 	(hub.Button method)

 	(hub.Display method)

 	(hub.Motion method)

 	(hub.Sound method)

 	(system.callbacks.CallbackHandler method)

 	CallbackHandler (class in system.callbacks)

 	Callbacks (class in system.callbacks)

 	callee-owned tuple

 	cancel() (event_loop.EventLoop method)

 	(system.abstractwrapper.AbstractWrapper method)

 	cancel_call() (protocol.ujsonrpc.JSONRPC method)

 	capacity_left() (hub.Battery method)

 	cat_log() (in module util.log)

 	ceil() (in module math)

 	chain_animations() (in module util.animations)

 	change_execution_mode() (ui.hubui.HubUI method)

 	charger_detect() (hub.Battery method)

 	chdir() (in module uos)

 	check_all_conditions() (runtime.virtualmachine.VirtualMachine method)

 	check_state() (system.callbacks.ConnectionCallbacks method)

 	choice() (in module urandom)

 	
 chr()

 	built-in function

 	clamp() (in module util.scratch)

 	clamp_power() (in module util.motor)

 	clamp_speed() (in module util.motor)

 	clamp_steering() (in module _api.motorpair)

 	
 classmethod()

 	built-in function

 	clear() (hub.Display method)

 	(runtime.dirty_dict.DirtyDict method)

 	(system.display.DisplayWrapper method)

 	clear_log() (in module util.log)

 	clear_methods() (protocol.ujsonrpc.JSONRPC method)

 	clear_slot() (in module util.storage)

 	clear_tasks() (system.callbacks.customcallbacks.CustomSensorCallbackManager method)

 	close() (hub.BT_VCP method)

 	close_program() (in module util.storage)

 	
 cmath

 	module

 	
 	collect() (in module gc)

 	color_percentage() (in module util.color)

 	color_to_number() (in module util.scratch)

 	ColorSensor (class in _api.colorsensor)

 	
 commands

 	module

 	
 commands.abstract_handler

 	module

 	
 commands.hub_methods

 	module

 	
 commands.light_methods

 	module

 	
 commands.linegraphmonitor_methods

 	module

 	
 commands.motor_methods

 	module

 	
 commands.move_methods

 	module

 	
 commands.program_methods

 	module

 	
 commands.sound_methods

 	module

 	
 commands.wait_methods

 	module

 	compare() (in module util.scratch)

 	
 compile()

 	built-in function

 	compile() (in module ure)

 	complex (built-in class)

 	connect() (hub.bluetooth method)

 	ConnectionCallbacks (class in system.callbacks)

 	const() (in module micropython)

 	convert_animation_frame() (in module util.scratch)

 	convert_brightness() (in module util.scratch)

 	convert_image() (in module util.scratch)

 	copysign() (in module math)

 	cos() (in module cmath)

 	(in module math)

 	cosh() (in module math)

 	cpu (class in machine)

 	CPython

 	crc8() (in module _onewire)

 	current() (hub.Battery method)

 	current_motion() (in module util.sensors)

 	CustomSensorCallbackManager (class in system.callbacks.customcallbacks)

 	CustomSensorCallbackManager._active_tasks (in module system.callbacks.customcallbacks)

D

 	
 	DATA_DIR (in module util.constants)

 	datetime() (machine.RTC method)

 	debug() (machine.Pin method)

 	decode() (array.array.array method)

 	DecompIO (class in uzlib)

 	decompress() (in module uzlib)

 	deepsleep() (in module machine)

 	DEFAULT_IMAGE (in module ui.hubui)

 	(in module util.constants)

 	degrees() (in module math)

 	deinit() (machine.SPI method)

 	(machine.Timer method)

 	(machine.UART method)

 	
 delattr()

 	built-in function

 	deque() (in module ucollections)

 	dict (built-in class)

 	dict() (machine.Pin method)

 	dict_get() (runtime.dirty_dict.DirtyDict method)

 	dict_set() (runtime.dirty_dict.DirtyDict method)

 	did_bump() (system.callbacks.customcallbacks.CustomSensorCallbackManager static method)

 	did_change() (system.callbacks.customcallbacks.CustomSensorCallbackManager static method)

 	digest() (uhashlib.hash method)

 	DIM_WHITE (in module util.color)

 	
 dir()

 	built-in function

 	
 	dir_to_rotation() (in module util.rotation)

 	dir_to_speed() (in module util.motor)

 	dirty_items() (runtime.dirty_dict.DirtyDict method)

 	DirtyDict (class in runtime.dirty_dict)

 	disable() (in module gc)

 	disable_irq() (in module machine)

 	discoverable() (hub.bt method)

 	Display (class in hub)

 	display (in module hub)

 	display_brightness() (runtime.vm_store.VMStore method)

 	DISPLAY_HEIGHT (in module util.animations)

 	DISPLAY_WIDTH (in module util.animations)

 	DisplayWrapper (class in system.display)

 	DistanceSensor (class in _api.distancesensor)

 	DistanceSensor._LIGHT_MODE (in module _api.distancesensor)

 	DistanceSensor._LONG_RANGE_MODE (in module _api.distancesensor)

 	DistanceSensor._SHORT_RANGE_MODE (in module _api.distancesensor)

 	DistanceSensor.CM (in module _api.distancesensor)

 	DistanceSensor.IN (in module _api.distancesensor)

 	DistanceSensor.PERCENT (in module _api.distancesensor)

 	
 divmod()

 	built-in function

 	download_animation() (in module util.animations)

 	dump() (in module ujson)

 	dumps() (in module ujson)

 	dupterm() (in module uos)

E

 	
 	e (in module cmath)

 	(in module math)

 	Ellipsis (built-in variable)

 	emit() (protocol.ujsonrpc.JSONRPC method)

 	emit_large() (protocol.ujsonrpc.JSONRPC method)

 	enable() (in module gc)

 	enable_irq() (in module machine)

 	
 enumerate()

 	built-in function

 	EOFError

 	erase_superblock() (in module firmware)

 	erf() (in module math)

 	erfc() (in module math)

 	error() (protocol.ujsonrpc.JSONRPC method)

 	error_handler (in module util.error_handler)

 	errorcode (in module uerrno)

 	ErrorHandler (class in util.error_handler)

 	
 	
 eval()

 	built-in function

 	
 event_loop

 	module

 	EventLoop (class in event_loop)

 	Exception

 	
 exec()

 	built-in function

 	
 execfile()

 	built-in function

 	exit() (in module sys)

 	exp() (in module cmath)

 	(in module math)

 	expm1() (in module math)

 	ext_flash_erase() (in module firmware)

 	ext_flash_read_length() (in module firmware)

 	extend() (array.array.array method)

F

 	
 	fabs() (in module math)

 	factorial() (in module math)

 	feed() (machine.wdt method)

 	file_transfer() (in module hub)

 	FileIO (class in uio)

 	
 filter()

 	built-in function

 	filter_dict_len() (in module programrunner)

 	filter_vm_lists() (in module programrunner)

 	filter_vm_vars() (in module programrunner)

 	
 firmware

 	module

 	flash_read() (in module firmware)

 	flash_write() (in module firmware)

 	float (built-in class)

 	
 	FLOAT (in module util.constants)

 	float() (system.motorwrapper.MotorWrapper method)

 	(system.movewrapper.MoveWrapper method)

 	FLOAT32 (in module uctypes)

 	FLOAT64 (in module uctypes)

 	floor() (in module math)

 	fmod() (in module math)

 	ForceSensor (class in _api.forcesensor)

 	freq() (in module machine)

 	frexp() (in module math)

 	from_bytes() (int class method)

 	from_direction() (system.movewrapper.MoveWrapper method)

 	from_steering() (in module system.movewrapper)

 	(system.movewrapper.MoveWrapper method)

 	frozenset (built-in class)

G

 	
 	gamma() (in module math)

 	
 gc

 	module

 	generate_project_id() (in module util.storage)

 	GeneratorExit

 	gesture() (hub.Motion method)

 	get() (in module runtime.timer)

 	(system.motorwrapper.MotorWrapper method)

 	get_ambient_light() (_api.colorsensor.ColorSensor method)

 	get_blue() (_api.colorsensor.ColorSensor method)

 	get_color() (_api.colorsensor.ColorSensor method)

 	get_color_percentage() (in module util.color)

 	get_default_speed() (_api.motor.Motor method)

 	(_api.motorpair.MotorPair method)

 	get_degrees_counted() (_api.motor.Motor method)

 	get_distance_cm() (_api.distancesensor.DistanceSensor method)

 	get_distance_inches() (_api.distancesensor.DistanceSensor method)

 	get_distance_percentage() (_api.distancesensor.DistanceSensor method)

 	get_event_loop() (in module event_loop)

 	get_force_newton() (_api.forcesensor.ForceSensor method)

 	get_force_percentage() (_api.forcesensor.ForceSensor method)

 	get_gesture() (_api.motionsensor.MotionSensor method)

 	get_green() (_api.colorsensor.ColorSensor method)

 	get_methods() (commands.abstract_handler.AbstractHandler method)

 	(commands.hub_methods.HubMethods method)

 	(commands.light_methods.LightMethods method)

 	(commands.linegraphmonitor_methods.LinegraphMonitorMethods method)

 	(commands.motor_methods.MotorMethods method)

 	(commands.move_methods.MoveMethods method)

 	(commands.program_methods.ProgramMethods method)

 	(commands.sound_methods.SoundMethods method)

 	(commands.wait_methods.WaitMethods method)

 	get_orientation() (_api.motionsensor.MotionSensor method)

 	
 	get_path() (in module util.storage)

 	get_pitch_angle() (_api.motionsensor.MotionSensor method)

 	get_pixel() (util.constants.Image method)

 	get_position() (_api.motor.Motor method)

 	get_program_project_id() (in module util.storage)

 	get_program_type() (in module util.storage)

 	get_red() (_api.colorsensor.ColorSensor method)

 	get_reflected_light() (_api.colorsensor.ColorSensor method)

 	get_rgb_intensity() (_api.colorsensor.ColorSensor method)

 	get_rgb_percentage() (in module util.color)

 	get_roll_angle() (_api.motionsensor.MotionSensor method)

 	get_sensor_value() (in module util.sensors)

 	get_speed() (_api.motor.Motor method)

 	get_storage_information() (in module util.storage)

 	get_time() (in module util.time)

 	(runtime.virtualmachine.VirtualMachine method)

 	get_used_slots() (in module util.storage)

 	get_variable() (in module util.scratch)

 	get_volume() (_api.speaker.Speaker method)

 	get_yaw_angle() (_api.motionsensor.MotionSensor method)

 	
 getattr()

 	built-in function

 	getcwd() (in module uos)

 	getrandbits() (in module urandom)

 	getvalue() (uio.BytesIO method)

 	
 globals()

 	built-in function

 	GPIO

 	GPIO port

 	gpio() (machine.Pin method)

 	GREEN (in module util.color)

 	group() (ure.match method)

 	gyroscope() (hub.Motion method)

 	gyroscope_filter() (hub.Motion method)

H

 	
 	handle_center_button_lights() (commands.light_methods.LightMethods method)

 	handle_delete_file() (commands.linegraphmonitor_methods.LinegraphMonitorMethods method)

 	handle_display_animation() (commands.light_methods.LightMethods method)

 	handle_display_clear() (commands.light_methods.LightMethods method)

 	handle_display_image() (commands.light_methods.LightMethods method)

 	handle_display_image_for() (commands.light_methods.LightMethods method)

 	handle_display_rotate_direction() (commands.light_methods.LightMethods method)

 	handle_display_rotate_orientation() (commands.light_methods.LightMethods method)

 	handle_display_set_pixel() (commands.light_methods.LightMethods method)

 	handle_display_sync() (commands.light_methods.LightMethods method)

 	handle_display_text() (commands.light_methods.LightMethods method)

 	handle_get_hub_info() (commands.hub_methods.HubMethods method)

 	handle_get_linegraph_monitor_info() (commands.linegraphmonitor_methods.LinegraphMonitorMethods method)

 	handle_get_linegraph_monitor_package() (commands.linegraphmonitor_methods.LinegraphMonitorMethods method)

 	handle_motor_adjust_offset() (commands.motor_methods.MotorMethods method)

 	handle_motor_go_direction_to_position() (commands.motor_methods.MotorMethods method)

 	handle_motor_go_to_relative_position() (commands.motor_methods.MotorMethods method)

 	handle_motor_position() (commands.motor_methods.MotorMethods method)

 	handle_motor_pwm() (commands.motor_methods.MotorMethods method)

 	handle_motor_run_for_degrees() (commands.motor_methods.MotorMethods method)

 	handle_motor_run_timed() (commands.motor_methods.MotorMethods method)

 	handle_motor_set_position() (commands.motor_methods.MotorMethods method)

 	handle_motor_start() (commands.motor_methods.MotorMethods method)

 	handle_motor_stop() (commands.motor_methods.MotorMethods method)

 	handle_move_project() (commands.program_methods.ProgramMethods method)

 	handle_move_start_powers() (commands.move_methods.MoveMethods method)

 	handle_move_start_speeds() (commands.move_methods.MoveMethods method)

 	handle_move_stop() (commands.move_methods.MoveMethods method)

 	handle_move_tank_degrees() (commands.move_methods.MoveMethods method)

 	handle_move_tank_time() (commands.move_methods.MoveMethods method)

 	handle_notify_error() (util.error_handler.ErrorHandler method)

 	handle_play_sound() (commands.sound_methods.SoundMethods method)

 	handle_program_execute() (commands.program_methods.ProgramMethods method)

 	handle_program_get_time() (commands.program_methods.ProgramMethods method)

 	handle_program_modechange() (commands.program_methods.ProgramMethods method)

 	handle_program_reset_time() (commands.program_methods.ProgramMethods method)

 	handle_program_start_time() (commands.program_methods.ProgramMethods method)

 	handle_program_terminate() (commands.program_methods.ProgramMethods method)

 	handle_remove_project() (commands.program_methods.ProgramMethods method)

 	handle_reset_yaw() (commands.hub_methods.HubMethods method)

 	handle_runtime_error() (util.error_handler.ErrorHandler method)

 	handle_set_hub_name() (commands.hub_methods.HubMethods method)

 	handle_set_port_mode() (commands.hub_methods.HubMethods method)

 	
 	handle_soft_reset() (commands.program_methods.ProgramMethods method)

 	handle_sound_beep() (commands.sound_methods.SoundMethods method)

 	handle_sound_beep_for_time() (commands.sound_methods.SoundMethods method)

 	handle_sound_off() (commands.sound_methods.SoundMethods method)

 	handle_start_write_program() (commands.program_methods.ProgramMethods method)

 	handle_storage_status() (commands.program_methods.ProgramMethods method)

 	handle_trigger_current_state() (commands.hub_methods.HubMethods method)

 	handle_ultrasonic_light_up() (commands.light_methods.LightMethods method)

 	handle_user_program_error() (util.error_handler.ErrorHandler method)

 	handle_wait_gesture() (commands.wait_methods.WaitMethods method)

 	handle_when_sensor_changed() (commands.wait_methods.WaitMethods method)

 	handle_when_sensor_force_bumped() (commands.wait_methods.WaitMethods method)

 	handle_when_sensor_force_released() (commands.wait_methods.WaitMethods method)

 	handle_write_package() (commands.program_methods.ProgramMethods method)

 	hard_reset() (system.callbacks.ButtonCallbacks method)

 	(system.callbacks.CallbackHandler method)

 	(system.callbacks.Callbacks method)

 	(system.callbacks.PortCallbacks method)

 	
 hasattr()

 	built-in function

 	
 hash()

 	built-in function

 	heap_lock() (in module micropython)

 	heap_unlock() (in module micropython)

 	heapify() (in module uheapq)

 	heappop() (in module uheapq)

 	heappush() (in module uheapq)

 	height() (util.constants.Image method)

 	
 help()

 	built-in function

 	
 hex()

 	built-in function

 	hexdigest() (uhashlib.hash method)

 	hexlify() (in module ubinascii)

 	high() (machine.Pin method)

 	HOLD (in module util.constants)

 	hold() (system.motorwrapper.MotorWrapper method)

 	(system.movewrapper.MoveWrapper method)

 	
 hub

 	module

 	
 hub_runtime

 	module

 	HubMethods (class in commands.hub_methods)

 	HubUI (class in ui.hubui)

I

 	
 	I2C (class in machine)

 	
 id()

 	built-in function

 	idle (ui.hubui.HubUI property)

 	idle() (in module machine)

 	ilistdir() (in module uos)

 	Image (class in util.constants)

 	Image.ALL_ARROWS (in module util.constants)

 	Image.ALL_CLOCKS (in module util.constants)

 	Image.ANGRY (in module util.constants)

 	Image.ARROW_E (in module util.constants)

 	Image.ARROW_N (in module util.constants)

 	Image.ARROW_NE (in module util.constants)

 	Image.ARROW_NW (in module util.constants)

 	Image.ARROW_S (in module util.constants)

 	Image.ARROW_SE (in module util.constants)

 	Image.ARROW_SW (in module util.constants)

 	Image.ARROW_W (in module util.constants)

 	Image.ASLEEP (in module util.constants)

 	Image.BUTTERFLY (in module util.constants)

 	Image.CHESSBOARD (in module util.constants)

 	Image.CLOCK1 (in module util.constants)

 	Image.CLOCK10 (in module util.constants)

 	Image.CLOCK11 (in module util.constants)

 	Image.CLOCK12 (in module util.constants)

 	Image.CLOCK2 (in module util.constants)

 	Image.CLOCK3 (in module util.constants)

 	Image.CLOCK4 (in module util.constants)

 	Image.CLOCK5 (in module util.constants)

 	Image.CLOCK6 (in module util.constants)

 	Image.CLOCK7 (in module util.constants)

 	Image.CLOCK8 (in module util.constants)

 	Image.CLOCK9 (in module util.constants)

 	Image.CONFUSED (in module util.constants)

 	Image.COW (in module util.constants)

 	Image.DIAMOND (in module util.constants)

 	Image.DIAMOND_SMALL (in module util.constants)

 	Image.DUCK (in module util.constants)

 	Image.FABULOUS (in module util.constants)

 	Image.GHOST (in module util.constants)

 	Image.GIRAFFE (in module util.constants)

 	Image.GO_DOWN (in module util.constants)

 	Image.GO_LEFT (in module util.constants)

 	Image.GO_RIGHT (in module util.constants)

 	Image.GO_UP (in module util.constants)

 	Image.HAPPY (in module util.constants)

 	Image.HEART (in module util.constants)

 	Image.HEART_SMALL (in module util.constants)

 	Image.HOUSE (in module util.constants)

 	Image.MEH (in module util.constants)

 	Image.MUSIC_CROTCHET (in module util.constants)

 	Image.MUSIC_QUAVER (in module util.constants)

 	Image.MUSIC_QUAVERS (in module util.constants)

 	Image.NO (in module util.constants)

 	Image.PACMAN (in module util.constants)

 	Image.PITCHFORK (in module util.constants)

 	Image.RABBIT (in module util.constants)

 	Image.ROLLERSKATE (in module util.constants)

 	Image.SAD (in module util.constants)

 	Image.SILLY (in module util.constants)

 	Image.SKULL (in module util.constants)

 	Image.SMILE (in module util.constants)

 	Image.SNAKE (in module util.constants)

 	Image.SQUARE (in module util.constants)

 	Image.SQUARE_SMALL (in module util.constants)

 	Image.STICKFIGURE (in module util.constants)

 	Image.SURPRISED (in module util.constants)

 	
 	Image.SWORD (in module util.constants)

 	Image.TARGET (in module util.constants)

 	Image.TORTOISE (in module util.constants)

 	Image.TRIANGLE (in module util.constants)

 	Image.TRIANGLE_LEFT (in module util.constants)

 	Image.TSHIRT (in module util.constants)

 	Image.UMBRELLA (in module util.constants)

 	Image.XMAS (in module util.constants)

 	Image.YES (in module util.constants)

 	implementation (in module sys)

 	ImportError

 	INACTIVE_SHUTDOWN_BT_MS (in module ui.hubui)

 	(in module util.constants)

 	INACTIVE_SHUTDOWN_MS (in module ui.hubui)

 	(in module util.constants)

 	IndentationError

 	IndexError

 	info() (hub.Battery method)

 	(hub.bt method)

 	(hub.Port method)

 	(hub.supervision method)

 	(in module firmware)

 	(in module hub)

 	(in module machine)

 	(machine.RTC method)

 	init() (hub.USB_VCP method)

 	(in module hub_runtime)

 	(machine.I2C method)

 	(machine.Pin method)

 	(machine.SPI method)

 	(machine.Timer method)

 	(machine.UART method)

 	init_attach() (system.callbacks.PortCallbacks method)

 	initialize() (util.error_handler.ErrorHandler method)

 	int (built-in class)

 	INT16 (in module uctypes)

 	INT32 (in module uctypes)

 	INT64 (in module uctypes)

 	INT8 (in module uctypes)

 	interned string

 	INTERRUPTED (in module util.constants)

 	IOBase (class in uio)

 	ioctl() (uos.AbstractBlockDev method)

 	ipoll() (uselect.poll method)

 	irq() (machine.Pin method)

 	(machine.UART method)

 	is_int() (in module util.scratch)

 	is_less_than() (system.callbacks.customcallbacks.CustomSensorCallbackManager static method)

 	is_motor() (system.motors.Motors method)

 	is_pressed() (_api.button.Button method)

 	(_api.forcesensor.ForceSensor method)

 	(hub.Button method)

 	is_running() (programrunner.ProgramRunner method)

 	is_type() (in module util.sensors)

 	is_valid() (system.movewrapper.MoveWrapper method)

 	isclose() (in module math)

 	isconnected() (hub.BT_VCP method)

 	isenabled() (in module gc)

 	isfinite() (in module math)

 	isinf() (in module math)

 	
 isinstance()

 	built-in function

 	isnan() (in module math)

 	
 issubclass()

 	built-in function

 	
 iter()

 	built-in function

J

 	
 	JSONRPC (class in protocol.ujsonrpc)

 	
 	JSONRPC.methods (in module protocol.ujsonrpc)

K

 	
 	kbd_intr() (in module micropython)

 	
 	KeyboardInterrupt

 	KeyError

L

 	
 	LargeTechnicHub (class in _api.large_technic_hub)

 	LargeTechnicHub._left_button (in module _api.large_technic_hub)

 	LargeTechnicHub._light_matrix (in module _api.large_technic_hub)

 	LargeTechnicHub._motion_sensor (in module _api.large_technic_hub)

 	LargeTechnicHub._right_button (in module _api.large_technic_hub)

 	LargeTechnicHub._speaker (in module _api.large_technic_hub)

 	LargeTechnicHub._status_light (in module _api.large_technic_hub)

 	LargeTechnicHub.PORT_A (in module _api.large_technic_hub)

 	LargeTechnicHub.PORT_B (in module _api.large_technic_hub)

 	LargeTechnicHub.PORT_C (in module _api.large_technic_hub)

 	LargeTechnicHub.PORT_D (in module _api.large_technic_hub)

 	LargeTechnicHub.PORT_E (in module _api.large_technic_hub)

 	LargeTechnicHub.PORT_F (in module _api.large_technic_hub)

 	ldexp() (in module math)

 	led() (in module hub)

 	led_fade_in_out() (in module util.animations)

 	led_fade_to() (in module util.animations)

 	left_button (_api.large_technic_hub.LargeTechnicHub property)

 	
 len()

 	built-in function

 	lgamma() (in module math)

 	light_matrix (_api.large_technic_hub.LargeTechnicHub property)

 	light_up() (_api.colorsensor.ColorSensor method)

 	(_api.distancesensor.DistanceSensor method)

 	light_up_all() (_api.colorsensor.ColorSensor method)

 	(_api.distancesensor.DistanceSensor method)

 	LightMatrix (class in _api.lightmatrix)

 	LightMethods (class in commands.light_methods)

 	LightMethods.DEFAULT_DISPLAY_PARAMS (in module commands.light_methods)

 	lightsleep() (in module machine)

 	LINEGRAPH_DIR (in module util.constants)

 	LinegraphMonitorMethods (class in commands.linegraphmonitor_methods)

 	list (built-in class)

 	list_append() (runtime.dirty_dict.DirtyDict method)

 	
 	list_clear() (runtime.dirty_dict.DirtyDict method)

 	list_del() (runtime.dirty_dict.DirtyDict method)

 	list_insert() (runtime.dirty_dict.DirtyDict method)

 	list_set() (runtime.dirty_dict.DirtyDict method)

 	listdir() (in module uos)

 	LITTLE_ENDIAN (in module uctypes)

 	load() (in module ujson)

 	loads() (in module ujson)

 	LOCAL_NAME (in module util.constants)

 	
 locals()

 	built-in function

 	localtime() (in module utime)

 	log() (in module cmath)

 	(in module math)

 	log10() (in module cmath)

 	(in module math)

 	log2() (in module math)

 	log_critical_error() (in module util.log)

 	log_to_file() (in module util.log)

 	LONG_PRESS_MS (in module util.constants)

 	LookupError

 	looper() (protocol.rpc_protocol.RPCProtocol method)

 	low() (machine.Pin method)

 	LPF2_ACCELERATION (in module util.constants)

 	LPF2_FLIPPER_COLOR (in module util.constants)

 	LPF2_FLIPPER_DISTANCE (in module util.constants)

 	LPF2_FLIPPER_FORCE (in module util.constants)

 	LPF2_FLIPPER_MOTOR_LARGE (in module util.constants)

 	LPF2_FLIPPER_MOTOR_MEDIUM (in module util.constants)

 	LPF2_FLIPPER_MOTOR_SMALL (in module util.constants)

 	LPF2_GYRO (in module util.constants)

 	LPF2_ORIENTATION (in module util.constants)

 	LPF2_STONE_GREY_MOTOR_LARGE (in module util.constants)

 	LPF2_STONE_GREY_MOTOR_MEDIUM (in module util.constants)

M

 	
 	mac() (hub.bluetooth method)

 	
 machine

 	module

 	machine.DEEPSLEEP_RESET (in module machine)

 	machine.HARD_RESET (in module machine)

 	machine.PWRON_RESET (in module machine)

 	machine.RTC (class in machine)

 	machine.SOFT_RESET (in module machine)

 	machine.WDT_RESET (in module machine)

 	
 map()

 	built-in function

 	map_dirty() (in module programrunner)

 	mapper() (machine.Pin method)

 	match() (in module ure)

 	(ure.regex method)

 	
 math

 	module

 	
 max()

 	built-in function

 	maxsize (in module sys)

 	MCU

 	mem16 (in module machine)

 	mem32 (in module machine)

 	mem8 (in module machine)

 	mem_alloc() (in module gc)

 	mem_free() (in module gc)

 	mem_info() (in module micropython)

 	MemoryError

 	memoryview (built-in class)

 	
 micropython

 	module

 	MicroPython port

 	MicroPython Unix port

 	micropython-lib

 	
 min()

 	built-in function

 	
 mindstorms

 	module

 	mkdir() (in module uos)

 	mkfs() (uos.VfsLfs1 static method)

 	mktime() (in module utime)

 	mode() (hub.Port method)

 	(machine.Pin method)

 	modf() (in module math)

 	modify() (uselect.poll method)

 	
 module

 	_api

 	_api.app

 	_api.button

 	_api.colorsensor

 	_api.distancesensor

 	_api.forcesensor

 	_api.large_technic_hub

 	_api.lightmatrix

 	_api.motionsensor

 	_api.motor

 	_api.motorpair

 	_api.speaker

 	_api.statuslight

 	_api.util

 	_onewire

 	array

 	cmath

 	commands

 	commands.abstract_handler

 	commands.hub_methods

 	commands.light_methods

 	commands.linegraphmonitor_methods

 	commands.motor_methods

 	commands.move_methods

 	commands.program_methods

 	commands.sound_methods

 	commands.wait_methods

 	event_loop

 	firmware

 	gc

 	hub

 	hub_runtime

 	machine

 	math

 	micropython

 	mindstorms

 	programrunner

 	protocol

 	protocol.notifications

 	protocol.rpc_protocol

 	protocol.ujsonrpc

 	runtime

 	runtime.dirty_dict

 	runtime.multimotor

 	runtime.stack

 	runtime.timer

 	runtime.virtualmachine

 	runtime.vm_store

 	spike

 	sys

 	system

 	system.abstractwrapper

 	system.callbacks

 	system.callbacks.customcallbacks

 	system.display

 	system.motors

 	system.motorwrapper

 	system.move

 	system.movewrapper

 	system.sound

 	ubinascii

 	ucollections

 	uctypes

 	uerrno

 	uhashlib

 	uheapq

 	ui.hubui

 	uio

 	ujson

 	uos

 	urandom

 	ure

 	uselect

 	ustruct

 	util

 	util.animations

 	util.color

 	util.constants

 	util.error_handler

 	util.log

 	util.motor

 	util.print_override

 	util.resetter

 	util.rotation

 	util.schedule

 	util.scratch

 	util.sensors

 	util.storage

 	util.time

 	utime

 	utimeq

 	uzlib

 	version

 	
 	modules (in module sys)

 	Motion (class in hub)

 	motion (in module hub)

 	Motion.BACK (in module hub)

 	Motion.DOUBLETAPPED (in module hub)

 	Motion.DOWN (in module hub)

 	Motion.FREEFALL (in module hub)

 	Motion.FRONT (in module hub)

 	Motion.LEFTSIDE (in module hub)

 	Motion.NONE (in module hub)

 	Motion.RIGHTSIDE (in module hub)

 	Motion.SHAKE (in module hub)

 	Motion.TAPPED (in module hub)

 	Motion.UP (in module hub)

 	motion_sensor (_api.large_technic_hub.LargeTechnicHub property)

 	MotionSensor (class in _api.motionsensor)

 	MotionSensor.BACK (in module _api.motionsensor)

 	MotionSensor.DOUBLE_TAPPED (in module _api.motionsensor)

 	MotionSensor.DOWN (in module _api.motionsensor)

 	MotionSensor.FALLING (in module _api.motionsensor)

 	MotionSensor.FRONT (in module _api.motionsensor)

 	MotionSensor.LEFT_SIDE (in module _api.motionsensor)

 	MotionSensor.RIGHT_SIDE (in module _api.motionsensor)

 	MotionSensor.SHAKEN (in module _api.motionsensor)

 	MotionSensor.TAPPED (in module _api.motionsensor)

 	MotionSensor.UP (in module _api.motionsensor)

 	Motor (class in _api.motor)

 	Motor.BRAKE (in module _api.motor)

 	Motor.COAST (in module _api.motor)

 	Motor.HOLD (in module _api.motor)

 	motor_acceleration() (runtime.vm_store.VMStore method)

 	motor_last_status() (runtime.vm_store.VMStore method)

 	motor_speed() (runtime.vm_store.VMStore method)

 	motor_stall() (runtime.vm_store.VMStore method)

 	motor_stop() (runtime.vm_store.VMStore method)

 	MOTOR_TYPES (in module util.constants)

 	MotorMethods (class in commands.motor_methods)

 	MotorPair (class in _api.motorpair)

 	MotorPair.BRAKE (in module _api.motorpair)

 	MotorPair.CM (in module _api.motorpair)

 	MotorPair.COAST (in module _api.motorpair)

 	MotorPair.DEGREES (in module _api.motorpair)

 	MotorPair.HOLD (in module _api.motorpair)

 	MotorPair.IN (in module _api.motorpair)

 	MotorPair.ROTATIONS (in module _api.motorpair)

 	MotorPair.SECONDS (in module _api.motorpair)

 	Motors (class in system.motors)

 	Motors.wrappers (in module system.motors)

 	MotorWrapper (class in system.motorwrapper)

 	MotorWrapper.motor (in module system.motorwrapper)

 	mount() (in module uos)

 	move() (_api.motorpair.MotorPair method)

 	move_acceleration() (runtime.vm_store.VMStore method)

 	move_at_power() (system.movewrapper.MoveWrapper method)

 	move_calibration() (runtime.vm_store.VMStore method)

 	move_differential_speed() (system.movewrapper.MoveWrapper method)

 	move_differential_speed_async() (system.movewrapper.MoveWrapper method)

 	move_for_time() (system.movewrapper.MoveWrapper method)

 	move_for_time_async() (system.movewrapper.MoveWrapper method)

 	move_last_status() (runtime.vm_store.VMStore method)

 	move_pair() (runtime.vm_store.VMStore method)

 	move_slot() (in module util.storage)

 	move_speed() (runtime.vm_store.VMStore method)

 	move_stop() (runtime.vm_store.VMStore method)

 	move_tank() (_api.motorpair.MotorPair method)

 	Movement (class in system.move)

 	Movement._pairs (in module system.move)

 	MoveMethods (class in commands.move_methods)

 	MoveWrapper (class in system.movewrapper)

 	MoveWrapper.pair (in module system.movewrapper)

 	mp_schedule() (in module util.schedule)

 	MSHub (class in mindstorms)

 	MultiMotor (class in runtime.multimotor)

 	music_instrument() (runtime.vm_store.VMStore method)

 	music_tempo() (runtime.vm_store.VMStore method)

N

 	
 	name() (machine.Pin method)

 	namedtuple() (in module ucollections)

 	NameError

 	names() (machine.Pin method)

 	NATIVE (in module uctypes)

 	newSensorDisconnectedError() (in module _api.util)

 	
 next()

 	built-in function

 	NO_KEY (in module util.constants)

 	NO_RESPONSE (in module protocol.ujsonrpc)

 	NO_STATUS (in module util.constants)

 	note_to_frequency() (in module util.scratch)

 	notify_all_state() (programrunner.ProgramRunner method)

 	notify_battery_status() (in module protocol.notifications)

 	notify_button_event() (in module protocol.notifications)

 	notify_debug_event() (in module protocol.notifications)

 	
 	notify_error_event() (in module protocol.notifications)

 	notify_gesture_event() (in module protocol.notifications)

 	notify_gesture_status() (in module protocol.notifications)

 	notify_info_status() (in module protocol.notifications)

 	notify_linegraph_timer_reset() (in module protocol.notifications)

 	notify_program_running() (in module protocol.notifications)

 	notify_sensor_data() (in module protocol.notifications)

 	notify_stack_start() (in module protocol.notifications)

 	notify_stack_stop() (in module protocol.notifications)

 	notify_storage_status() (in module protocol.notifications)

 	notify_vm_state() (in module protocol.notifications)

 	NotImplemented (built-in variable)

 	NotImplementedError

 	NUMBER (in module util.constants)

 	number_to_color() (in module util.scratch)

 	number_to_orientation() (in module util.scratch)

O

 	
 	object (built-in class)

 	
 oct()

 	built-in function

 	off() (_api.lightmatrix.LightMatrix method)

 	(_api.statuslight.StatusLight method)

 	(machine.Pin method)

 	(machine.Signal method)

 	on() (_api.statuslight.StatusLight method)

 	(machine.Pin method)

 	(machine.Signal method)

 	on_change() (hub.Button method)

 	on_connection() (ui.hubui.HubUI method)

 	on_pair() (system.move.Movement method)

 	
 	on_port() (system.motors.Motors method)

 	
 open()

 	built-in function

 	open() (in module uio)

 	open_program() (in module util.storage)

 	opt_level() (in module micropython)

 	
 ord()

 	built-in function

 	OrderedDict() (in module ucollections)

 	orientation() (hub.Motion method)

 	orientation_to_number() (in module util.scratch)

 	ORIENTATIONS (in module util.scratch)

 	OSError

 	OverflowError

P

 	
 	pack() (in module ustruct)

 	pack_into() (in module ustruct)

 	PAIR_REGEX (in module util.scratch)

 	parse_buffer() (protocol.ujsonrpc.JSONRPC method)

 	parse_chunk() (protocol.ujsonrpc.JSONRPC method)

 	partition_image_str() (in module util.scratch)

 	path (in module sys)

 	peektime() (utimeq.utimeq method)

 	percent_to_frequency() (in module util.scratch)

 	percent_to_int() (in module util.scratch)

 	phase() (in module cmath)

 	pi (in module cmath)

 	(in module math)

 	Pin (class in machine), [1]

 	pin() (machine.Pin method)

 	pitch_to_freq() (in module util.scratch)

 	pixel() (hub.Display method)

 	(system.display.DisplayWrapper method)

 	platform (in module sys)

 	play() (hub.Sound method)

 	(system.sound.SoundWrapper method)

 	play_async() (system.sound.SoundWrapper method)

 	play_sound() (_api.app.App method)

 	polar() (in module cmath)

 	poll() (in module uselect)

 	(uselect.poll method)

 	pop() (utimeq.utimeq method)

 	pop_force_reset() (in module util.storage)

 	popleft() (ucollections.deque method)

 	port

 	Port (class in hub)

 	port (in module hub)

 	port() (machine.Pin method)

 	Port.A (in module hub)

 	Port.ATTACHED (in module hub)

 	Port.B (in module hub)

 	Port.C (in module hub)

 	Port.D (in module hub)

 	Port.DETACHED (in module hub)

 	Port.E (in module hub)

 	Port.F (in module hub)

 	Port.MODE_DEFAULT (in module hub)

 	Port.MODE_FULL_DUPLEX (in module hub)

 	
 	Port.MODE_GPIO (in module hub)

 	Port.MODE_HALF_DUPLEX (in module hub)

 	Port.motor (in module hub)

 	PortCallbacks (class in system.callbacks)

 	PORTS (in module util.constants)

 	position() (hub.Motion method)

 	
 pow()

 	built-in function

 	pow() (in module math)

 	power_off() (in module hub)

 	preset() (system.motorwrapper.MotorWrapper method)

 	preset_yaw() (hub.Motion method)

 	presses() (hub.Button method)

 	PrimeHub (class in spike)

 	
 print()

 	built-in function

 	print_exception() (in module sys)

 	PROGRAM_EXECUTION_ERROR (in module util.error_handler)

 	PROGRAM_EXECUTION_MEMORY_ERROR (in module util.error_handler)

 	PROGRAM_TYPE_PYTHON (in module util.storage)

 	PROGRAM_TYPE_SCRATCH (in module util.storage)

 	ProgramMethods (class in commands.program_methods)

 	
 programrunner

 	module

 	ProgramRunner (class in programrunner)

 	ProgramRunner.IDLE (in module programrunner)

 	ProgramRunner.RUNNING_BLOCKING (in module programrunner)

 	ProgramRunner.RUNNING_NONBLOCKING (in module programrunner)

 	property (built-in class)

 	
 protocol

 	module

 	
 protocol.notifications

 	module

 	
 protocol.rpc_protocol

 	module

 	
 protocol.ujsonrpc

 	module

 	PTR (in module uctypes)

 	pull() (machine.Pin method)

 	push() (utimeq.utimeq method)

 	pwm() (hub.Port method)

 	(system.motorwrapper.MotorWrapper method)

 	pystack_use() (in module micropython)

Q

 	
 	qstr_info() (in module micropython)

R

 	
 	radians() (in module math)

 	randint() (in module urandom)

 	random() (in module urandom)

 	randrange() (in module urandom), [1]

 	
 range()

 	built-in function

 	read() (hub.BT_VCP method)

 	(machine.SPI method)

 	(machine.UART method)

 	read_local_name() (in module util.storage)

 	read_program() (in module util.storage)

 	read_u16() (in module machine)

 	readbit() (in module _onewire)

 	readblocks() (uos.AbstractBlockDev method)

 	readbyte() (in module _onewire)

 	readchar() (machine.UART method)

 	readfrom() (machine.I2C method)

 	readfrom_into() (machine.I2C method)

 	readfrom_mem() (machine.I2C method)

 	readfrom_mem_into() (machine.I2C method)

 	readinto() (hub.BT_VCP method)

 	(machine.I2C method)

 	(machine.SPI method)

 	(machine.UART method)

 	readline() (hub.BT_VCP method)

 	(machine.UART method)

 	readlines() (hub.BT_VCP method)

 	rect() (in module cmath)

 	recv() (hub.BT_VCP method)

 	RED (in module util.color)

 	register() (system.callbacks.CallbackHandler method)

 	(uselect.poll method)

 	register_callback() (runtime.virtualmachine.VirtualMachine method)

 	register_method_handlers() (protocol.rpc_protocol.RPCProtocol method)

 	register_on_broadcast() (runtime.virtualmachine.VirtualMachine method)

 	register_on_button() (runtime.virtualmachine.VirtualMachine method)

 	register_on_condition() (runtime.virtualmachine.VirtualMachine method)

 	register_on_gesture() (runtime.virtualmachine.VirtualMachine method)

 	register_on_start() (runtime.virtualmachine.VirtualMachine method)

 	register_persistent() (system.callbacks.CallbackHandler method)

 	register_port_callback_handlers() (system.motors.Motors method)

 	register_ports() (in module util.sensors)

 	register_rpc_handlers() (system.callbacks.ButtonCallbacks method)

 	register_single() (system.callbacks.CallbackHandler method)

 	remove() (in module uos)

 	remove_task() (system.callbacks.customcallbacks.CustomSensorCallbackManager method)

 	rename() (in module uos)

 	repl_reset() (util.resetter.RTTimer method)

 	repl_restart() (in module hub)

 	reply() (protocol.ujsonrpc.JSONRPC method)

 	
 repr()

 	built-in function

 	reset() (in module _onewire)

 	(in module machine)

 	(in module runtime.timer)

 	(in module ui.hubui)

 	(system.callbacks.ButtonCallbacks method)

 	(system.callbacks.CallbackHandler method)

 	(system.callbacks.Callbacks method)

 	(system.callbacks.PortCallbacks method)

 	(system.System method)

 	
 	reset_cause() (in module machine)

 	reset_time() (in module util.time)

 	(runtime.virtualmachine.VirtualMachine method)

 	reset_timer() (runtime.virtualmachine.VirtualMachine method)

 	reset_to_default_mode() (in module util.sensors)

 	reset_yaw() (hub.Motion method)

 	reset_yaw_angle() (_api.motionsensor.MotionSensor method)

 	restart() (runtime.stack.Stack method)

 	resume_suspended_msg() (protocol.ujsonrpc.JSONRPC method)

 	
 reversed()

 	built-in function

 	rgb_percentage() (in module util.color)

 	right_button (_api.large_technic_hub.LargeTechnicHub property)

 	rmdir() (in module uos)

 	rotate_hub_display() (in module util.rotation)

 	rotate_hub_display_to_orientation() (in module util.rotation)

 	rotate_hub_display_to_value() (in module util.rotation)

 	rotation() (hub.Display method)

 	
 round()

 	built-in function

 	RPCProtocol (class in protocol.rpc_protocol)

 	rssi() (hub.bluetooth method)

 	RTTimer (class in util.resetter)

 	run() (runtime.multimotor.MultiMotor method)

 	run_at_speed() (system.motorwrapper.MotorWrapper method)

 	run_at_speed_async() (system.motorwrapper.MotorWrapper method)

 	run_for_degrees() (_api.motor.Motor method)

 	(system.motorwrapper.MotorWrapper method)

 	run_for_degrees_async() (system.motorwrapper.MotorWrapper method)

 	run_for_rotations() (_api.motor.Motor method)

 	run_for_seconds() (_api.motor.Motor method)

 	run_for_time() (system.motorwrapper.MotorWrapper method)

 	run_for_time_async() (system.motorwrapper.MotorWrapper method)

 	run_forever() (event_loop.EventLoop method)

 	run_to_degrees_counted() (_api.motor.Motor method)

 	run_to_position() (_api.motor.Motor method)

 	(system.motorwrapper.MotorWrapper method)

 	run_to_position_async() (system.motorwrapper.MotorWrapper method)

 	run_to_relative_position() (system.motorwrapper.MotorWrapper method)

 	run_to_relative_position_async() (system.motorwrapper.MotorWrapper method)

 	
 runtime

 	module

 	
 runtime.dirty_dict

 	module

 	
 runtime.multimotor

 	module

 	
 runtime.stack

 	module

 	
 runtime.timer

 	module

 	
 runtime.virtualmachine

 	module

 	
 runtime.vm_store

 	module

 	RuntimeError

S

 	
 	sanitize() (in module system.display)

 	sanitize_movement_ports() (in module util.scratch)

 	sanitize_ports() (in module util.scratch)

 	scan() (hub.bluetooth method)

 	(machine.I2C method)

 	scan_result() (hub.bluetooth method)

 	schedule() (in module micropython)

 	schedule_coroutine() (runtime.virtualmachine.VirtualMachine method)

 	search() (in module ure)

 	(ure.regex method)

 	seed() (in module urandom)

 	select() (in module uselect)

 	send() (hub.BT_VCP method)

 	sendbreak() (machine.UART method)

 	sensor_data (in module util.sensors)

 	sep (in module uos)

 	set (built-in class)

 	set_default_speed() (_api.motor.Motor method)

 	(_api.motorpair.MotorPair method)

 	set_degrees_counted() (_api.motor.Motor method)

 	set_display_sync() (in module util.sensors)

 	set_force_reset() (in module util.storage)

 	set_motor_rotation() (_api.motorpair.MotorPair method)

 	set_pixel() (_api.lightmatrix.LightMatrix method)

 	(util.constants.Image method)

 	set_stall_detection() (_api.motor.Motor method)

 	set_stop_action() (_api.motor.Motor method)

 	(_api.motorpair.MotorPair method)

 	set_volume() (_api.speaker.Speaker method)

 	
 setattr()

 	built-in function

 	setinterrupt() (hub.BT_VCP method)

 	setitem() (runtime.dirty_dict.DirtyDict method)

 	setup_vm() (in module programrunner)

 	shift_down() (util.constants.Image method)

 	shift_in_from_bottom() (in module util.animations)

 	shift_in_from_bottom_left() (in module util.animations)

 	shift_in_from_left() (in module util.animations)

 	shift_in_from_right() (in module util.animations)

 	shift_in_from_top() (in module util.animations)

 	shift_in_from_top_right() (in module util.animations)

 	shift_left() (in module util.animations)

 	(util.constants.Image method)

 	shift_out_to_bottom() (in module util.animations)

 	shift_out_to_left() (in module util.animations)

 	shift_out_to_right() (in module util.animations)

 	shift_out_to_top() (in module util.animations)

 	shift_right() (in module util.animations)

 	(util.constants.Image method)

 	shift_up() (util.constants.Image method)

 	should_start() (runtime.stack.Stack method)

 	show() (hub.Display method)

 	(system.display.DisplayWrapper method)

 	show_async() (system.display.DisplayWrapper method)

 	show_frames() (commands.light_methods.LightMethods method)

 	show_image() (_api.lightmatrix.LightMatrix method)

 	shutdown() (runtime.virtualmachine.VirtualMachine method)

 	shutdown_animation() (in module util.animations)

 	SHUTDOWN_FRAMES (in module util.animations)

 	Signal (class in machine)

 	sin() (in module cmath)

 	(in module math)

 	sinh() (in module math)

 	sizeof() (in module uctypes)

 	sleep() (in module machine)

 	(in module utime)

 	sleep_ms() (in module utime)

 	sleep_us() (in module utime)

 	slice (built-in class)

 	SLOTS_IMAGE (in module ui.hubui)

 	(in module util.constants)

 	soft_reset() (in module machine)

 	
 sorted()

 	built-in function

 	Sound (class in hub)

 	sound (in module hub)

 	Sound.SOUND_SAWTOOTH (in module hub)

 	Sound.SOUND_SIN (in module hub)

 	Sound.SOUND_SQUARE (in module hub)

 	Sound.SOUND_TRIANGLE (in module hub)

 	sound_pan() (runtime.vm_store.VMStore method)

 	sound_pitch() (runtime.vm_store.VMStore method)

 	sound_volume() (runtime.vm_store.VMStore method)

 	SoundMethods (class in commands.sound_methods)

 	Sounds (class in util.constants)

 	Sounds.NAVIGATION (in module util.constants)

 	Sounds.NAVIGATION_FAST (in module util.constants)

 	Sounds.PROGRAM_START (in module util.constants)

 	Sounds.PROGRAM_STOP (in module util.constants)

 	Sounds.SHUTDOWN (in module util.constants)

 	Sounds.STARTUP (in module util.constants)

 	SoundWrapper (class in system.sound)

 	speaker (_api.large_technic_hub.LargeTechnicHub property)

 	Speaker (class in _api.speaker)

 	SPI (class in machine)

 	
 spike

 	module

 	
 spikeprint()

 	built-in function

 	spikeprint() (in module util.print_override)

 	split() (ure.regex method)

 	
 	sqrt() (in module cmath)

 	(in module math)

 	Stack (class in runtime.stack)

 	Stack.ON_BROADCAST (in module runtime.stack)

 	Stack.ON_BUTTON (in module runtime.stack)

 	Stack.ON_CONDITION (in module runtime.stack)

 	Stack.ON_GESTURE (in module runtime.stack)

 	Stack.ON_START (in module runtime.stack)

 	Stack.STATUS_IDLE (in module runtime.stack)

 	Stack.STATUS_WAITING (in module runtime.stack)

 	stack_use() (in module micropython)

 	STALLED (in module util.constants)

 	start() (_api.motor.Motor method)

 	(_api.motorpair.MotorPair method)

 	(in module hub_runtime)

 	(machine.I2C method)

 	(runtime.stack.Stack method)

 	(runtime.virtualmachine.VirtualMachine method)

 	(util.resetter.RTTimer method)

 	start_at_power() (_api.motor.Motor method)

 	(_api.motorpair.MotorPair method)

 	start_at_powers() (system.movewrapper.MoveWrapper method)

 	start_at_speeds() (system.movewrapper.MoveWrapper method)

 	start_beep() (_api.speaker.Speaker method)

 	start_notify_loop() (programrunner.ProgramRunner method)

 	start_program() (programrunner.ProgramRunner method)

 	(ui.hubui.HubUI method)

 	start_sound() (_api.app.App method)

 	start_tank() (_api.motorpair.MotorPair method)

 	start_tank_at_power() (_api.motorpair.MotorPair method)

 	START_TIME (in module runtime.timer)

 	start_time() (in module util.time)

 	stat() (in module uos)

 	
 staticmethod()

 	built-in function

 	status() (in module hub)

 	status_light (_api.large_technic_hub.LargeTechnicHub property)

 	StatusLight (class in _api.statuslight)

 	statvfs() (in module uos)

 	stderr (in module sys)

 	stdin (in module sys)

 	stdout (in module sys)

 	step() (event_loop.EventLoop method)

 	stop() (_api.motor.Motor method)

 	(_api.motorpair.MotorPair method)

 	(_api.speaker.Speaker method)

 	(machine.I2C method)

 	(runtime.stack.Stack method)

 	(system.motorwrapper.MotorWrapper method)

 	(system.movewrapper.MoveWrapper method)

 	stop_all() (programrunner.ProgramRunner method)

 	(ui.hubui.HubUI method)

 	stop_stacks() (runtime.virtualmachine.VirtualMachine method)

 	stop_time() (in module util.time)

 	StopAsyncIteration

 	StopIteration

 	str (built-in class)

 	stream

 	(protocol.rpc_protocol.RPCProtocol property)

 	(protocol.ujsonrpc.JSONRPC property)

 	streaming_animation() (in module util.animations)

 	STRING (in module util.constants)

 	StringIO (class in uio), [1]

 	struct (class in uctypes)

 	sub() (in module ure)

 	(ure.regex method)

 	SUCCESS (in module util.constants)

 	
 sum()

 	built-in function

 	sum_list_len() (in module programrunner)

 	
 super()

 	built-in function

 	supervision (class in hub)

 	(in module hub)

 	suspend_current_message() (protocol.ujsonrpc.JSONRPC method)

 	sync() (in module uos)

 	SyntaxError

 	
 sys

 	module

 	
 system

 	module

 	System (class in system)

 	system (in module system)

 	
 system.abstractwrapper

 	module

 	
 system.callbacks

 	module

 	
 system.callbacks.customcallbacks

 	module

 	
 system.display

 	module

 	
 system.motors

 	module

 	
 system.motorwrapper

 	module

 	
 system.move

 	module

 	
 system.movewrapper

 	module

 	
 system.sound

 	module

 	SystemExit

T

 	
 	tan() (in module math)

 	(in module util.scratch)

 	tanh() (in module math)

 	temperature() (hub.Battery method)

 	(in module hub)

 	TextIOWrapper (class in uio)

 	threshold() (in module gc)

 	ticks_add() (in module utime)

 	ticks_cpu() (in module utime)

 	ticks_diff() (in module utime)

 	ticks_ms() (in module utime)

 	ticks_us() (in module utime)

 	time() (in module utime)

 	
 	time_pulse_us() (in module machine)

 	timed_fn_buffer (in module util.log)

 	timed_function() (in module util.log)

 	Timer (class in machine)

 	TIMER_PACE_HIGH (in module util.constants)

 	TIMER_PACE_LOW (in module util.constants)

 	to_boolean() (in module util.scratch)

 	to_bytes() (int method)

 	to_number() (in module util.scratch)

 	trunc() (in module math)

 	tuple (built-in class)

 	type (built-in class)

 	TypeError

U

 	
 	UART (class in machine)

 	
 ubinascii

 	module

 	
 ucollections

 	module

 	
 uctypes

 	module

 	
 uerrno

 	module

 	
 uhashlib

 	module

 	uhashlib.sha256 (class in uhashlib)

 	
 uheapq

 	module

 	
 ui.hubui

 	module

 	UINT16 (in module uctypes)

 	UINT32 (in module uctypes)

 	UINT64 (in module uctypes)

 	UINT8 (in module uctypes)

 	
 uio

 	module

 	
 ujson

 	module

 	umount() (in module uos)

 	uname() (in module uos)

 	unhexlify() (in module ubinascii)

 	UnicodeError

 	uniform() (in module urandom)

 	unique_id() (in module machine)

 	unpack() (in module ustruct)

 	unpack_from() (in module ustruct)

 	unpair() (system.movewrapper.MoveWrapper method)

 	unregister() (uselect.poll method)

 	until() (system.callbacks.customcallbacks.CustomSensorCallbackManager method)

 	until_changed() (system.callbacks.customcallbacks.CustomSensorCallbackManager method)

 	until_force_bumped() (system.callbacks.customcallbacks.CustomSensorCallbackManager method)

 	until_less_than() (system.callbacks.customcallbacks.CustomSensorCallbackManager method)

 	untuple_vm_vars() (in module programrunner)

 	
 uos

 	module

 	update() (uhashlib.hash method)

 	update_battery_status() (in module util.sensors)

 	update_sensor_data() (in module util.sensors)

 	upip

 	
 urandom

 	module

 	
 ure

 	module

 	
 	USB_VCP (class in hub)

 	(in module hub)

 	(in module util.constants)

 	USB_VCP.CTS (in module hub)

 	USB_VCP.RTS (in module hub)

 	
 uselect

 	module

 	user_interaction() (in module ui.hubui)

 	
 ustruct

 	module

 	
 util

 	module

 	
 util.animations

 	module

 	
 util.color

 	module

 	
 util.constants

 	module

 	
 util.error_handler

 	module

 	
 util.log

 	module

 	
 util.motor

 	module

 	
 util.print_override

 	module

 	
 util.resetter

 	module

 	
 util.rotation

 	module

 	
 util.schedule

 	module

 	
 util.scratch

 	module

 	
 util.sensors

 	module

 	
 util.storage

 	module

 	
 util.time

 	module

 	
 utime

 	module

 	
 utimeq

 	module

 	utimeq (class in utimeq)

 	
 uzlib

 	module

V

 	
 	value() (machine.Pin method)

 	(machine.Signal method)

 	ValueError

 	VAR_DEFAULTS (in module util.constants)

 	
 version

 	module

 	version (in module sys)

 	version_info (in module sys)

 	
 	VfsLfs1 (class in uos)

 	VIOLET (in module util.color)

 	VirtualMachine (class in runtime.virtualmachine)

 	vm_has_extension() (programrunner.ProgramRunner method)

 	VMStore (class in runtime.vm_store)

 	VOID (in module uctypes)

 	voltage() (hub.Battery method)

 	volume() (hub.Sound method)

W

 	
 	wait_for_async() (in module _api.util)

 	wait_for_distance_closer_than() (_api.distancesensor.DistanceSensor method)

 	wait_for_distance_farther_than() (_api.distancesensor.DistanceSensor method)

 	wait_for_new_color() (_api.colorsensor.ColorSensor method)

 	wait_for_new_gesture() (_api.motionsensor.MotionSensor method)

 	wait_for_new_orientation() (_api.motionsensor.MotionSensor method)

 	wait_until_changed() (system.callbacks.customcallbacks.CustomSensorCallbackManager method)

 	wait_until_color() (_api.colorsensor.ColorSensor method)

 	wait_until_force_bumped() (system.callbacks.customcallbacks.CustomSensorCallbackManager method)

 	wait_until_less_than() (system.callbacks.customcallbacks.CustomSensorCallbackManager method)

 	wait_until_pressed() (_api.button.Button method)

 	(_api.forcesensor.ForceSensor method)

 	wait_until_ready_after_restart() (in module util.resetter)

 	wait_until_released() (_api.button.Button method)

 	(_api.forcesensor.ForceSensor method)

 	WaitMethods (class in commands.wait_methods)

 	wakeup() (machine.RTC method)

 	was_gesture() (_api.motionsensor.MotionSensor method)

 	(hub.Motion method)

 	was_interrupted() (_api.motor.Motor method)

 	(_api.motorpair.MotorPair method)

 	was_pressed() (_api.button.Button method)

 	(hub.Button method)

 	
 	was_stalled() (_api.motor.Motor method)

 	WDT (class in machine)

 	weather_location() (runtime.vm_store.VMStore method)

 	weather_offset() (runtime.vm_store.VMStore method)

 	WHITE (in module util.color)

 	width() (util.constants.Image method)

 	will_stop_restart() (ui.hubui.HubUI method)

 	wrap_clamp() (in module util.scratch)

 	write() (_api.lightmatrix.LightMatrix method)

 	(hub.BT_VCP method)

 	(machine.I2C method)

 	(machine.SPI method)

 	(machine.UART method)

 	(system.display.DisplayWrapper method)

 	write_async() (system.display.DisplayWrapper method)

 	write_local_name() (in module util.storage)

 	write_readinto() (machine.SPI method)

 	writebit() (in module _onewire)

 	writeblocks() (uos.AbstractBlockDev method)

 	writebyte() (in module _onewire)

 	writechar() (machine.UART method)

 	writeto() (machine.I2C method)

 	writeto_mem() (machine.I2C method)

 	writevto() (machine.I2C method)

Y

 	
 	YELLOW (in module util.color)

Z

 	
 	ZeroDivisionError

 	
 	
 zip()

 	built-in function

 nav.xhtml

 Table of Contents

 		
 MicroPython documentation and references

 		
 MicroPython libraries

 		
 Python standard libraries and micro-libraries

 		
 Builtin functions and exceptions

 		
 array – arrays of numeric data

 		
 cmath – mathematical functions for complex numbers

 		
 gc – control the garbage collector

 		
 math – mathematical functions

 		
 sys – system specific functions

 		
 ubinascii – binary/ASCII conversions

 		
 ucollections – collection and container types

 		
 uerrno – system error codes

 		
 uhashlib – hashing algorithms

 		
 uheapq – heap queue algorithm

 		
 uio – input/output streams

 		
 ujson – JSON encoding and decoding

 		
 uos – basic “operating system” services

 		
 ure – simple regular expressions

 		
 uselect – wait for events on a set of streams

 		
 ustruct – pack and unpack primitive data types

 		
 utime – time related functions

 		
 uzlib – zlib decompression

 		
 urandom – random number generation

 		
 MicroPython-specific libraries

 		
 machine — functions related to the hardware

 		
 micropython – access and control MicroPython internals

 		
 uctypes – access binary data in a structured way

 		
 utimeq – heap queue with times

 		
 _onewire – OneWire Protocol

 		
 MicroPython default libraries unavailable

 		
 Libraries specific to the Technic Hub

 		
 hub – hub brick functionality

 		
 firmware – Firmware information and loading

 		
 _api – user API

 		
 commands – commands module

 		
 event_loop – event_loop module

 		
 mindstorms – Mindstorms branding of the user API

 		
 programrunner – run user programs

 		
 protocol – RI5 communication protocol

 		
 runtime – runtime module

 		
 spike – Spike Prime branding of the user API

 		
 system – system module

 		
 ui.hubui – menu system

 		
 util – misc utility module

 		
 hub_runtime – Hub main module

 		
 version – version module

 		
 The MicroPython language

 		
 Glossary

 		
 The MicroPython Interactive Interpreter Mode (aka REPL)

 		
 Auto-indent

 		
 Auto-completion

 		
 Interrupting a running program

 		
 Paste Mode

 		
 Soft Reset

 		
 The special variable _ (underscore)

 		
 Raw Mode

 		
 Writing interrupt handlers

 		
 Tips and recommended practices

 		
 MicroPython Issues

 		
 Exceptions

 		
 General Issues

 		
 Maximising MicroPython Speed

 		
 Designing for speed

 		
 Identifying the slowest section of code

 		
 MicroPython code improvements

 		
 The Native code emitter

 		
 The Viper code emitter

 		
 Accessing hardware directly

 		
 MicroPython on Microcontrollers

 		
 Flash Memory

 		
 RAM

 		
 The Heap

 		
 String Operations

 		
 Postscript

 		
 Distribution packages, package management, and deploying applications

 		
 Overview

 		
 Distribution packages

 		
 upip package manager

 		
 Cross-installing packages

 		
 Cross-installing packages with freezing

 		
 Creating distribution packages

 		
 Application resources

 		
 References

 		
 Inline Assembler for Thumb2 architectures

 		
 Document conventions

 		
 Instruction Categories

 		
 Usage examples

 		
 References

 		
 Developing and building MicroPython

 		
 MicroPython external C modules

 		
 Structure of an external C module

 		
 Basic Example

 		
 Compiling the cmodule into MicroPython

 		
 Module usage in MicroPython

 		
 MicroPython license information

_static/file.png

_static/minus.png

_static/plus.png

